—RC Dorf and RH Bishop, Modern Control Systems, Chapter 2, p. 2
在上述程中,物理系統的數學模型方程可以用來推導信号流图方程。
用在設計合成的信号流图
信号流图也用在設計空間探索(英语:SDesign Space Exploration)(DSE),一個趨近實際呈現的過渡表示方式。設計空間探索會在許多不同的選項中找一個適合的解。典型的分析流程會先針對待確認的系統,以其各元件的物理方程式來建模。設計空間探索不同,其設計合成的規格是想要的傳遞函數。例如,不同的策略會產生不同的信號流圖,可由此推導出對應的實現方式[16]。
另一個使用有說明的信号流图的例子是連續時間行為的表示方式,作為架构生成器的输入[17]。
香農公式以及香農-哈普公式
香農公式(Shannon's formula)是計算類比電腦中互聯放大器增益的解析表示法。在二次大戰時,香農在探就類比電腦的功能運作時,發展了香農公式。因為戰爭期間的限制,香農當時沒有發表他的研究。塞繆爾·傑斐遜·梅森(英语:Samuel Jefferson Mason)在1952年重新發現了相同的公式。
^CE Shannon. The theory and design of linear differential equation machines. Fire Control of the US National Defense Research Committee: Report 411, Section D-2. January 1942. Reprinted in N. J. A. Sloane; Aaron D. Wyner (编). Claude E. Shannon: Collected Papers. Wiley IEEE Press. 1993: 514 [2017-10-21]. ISBN 978-0-7803-0434-5. (原始内容存档于2019-07-23).
^ 2.02.12.2Mason, Samuel J. Feedback Theory - Some Properties of Signal Flow Graphs(PDF). Proceedings of the IRE. September 1953, 41: 1144–1156 [2017-10-21]. doi:10.1109/jrproc.1953.274449. (原始内容存档(PDF)于2018-02-19). The flow graph may be interpreted as a signal transmission system in which each node is a tiny repeater station. The station receives signals via the incoming branches, combines the information in some manner, and then transmits the results along each outgoing branch.
^Jørgen Bang-Jensen; Gregory Z. Gutin. Digraphs. Springer. 2008 [2017-10-21]. ISBN 9781848009981. (原始内容存档于2013-11-14).
^
"A signal flow graph may be regarded as a simplified version of a block diagram. ... for cause and effect ... of linear systems ...we may regard the signal-flow graphs to be constrained by more rigid mathematical rules, whereas the usage of the block-diagram notation is less stringent." Kuo, Benjamin C. Automatic Control Systems 6th. Prentice-Hall. 1991: 77. ISBN 0-13-051046-7.
^
Gene F. Franklin; et al. Appendix W.3 Block Diagram Reduction. Feedback Control of Dynamic Systems. Prentice Hall. Apr 29, 2014.
^V.U.Bakshi U.A.Bakshi. Table 5.6: Comparison of block diagram and signal flow graph methods. Control Engineering. Technical Publications. 2007: 120 [2017-11-23]. ISBN 9788184312935. (原始内容存档于2019-07-25).
^A Anand Kumar. Table: Comparison of block diagram and signal flow methods. Control Systems 2nd. PHI Learning Pvt. Ltd. 2014: 165 [2017-11-23]. ISBN 9788120349391. (原始内容存档于2019-07-23).
^ 20.020.1Okrent, Howard; McNamee, Lawrence P. 3. 3 Flowgraph Theory. NASAP-70 User's and Programmer's manual(PDF). Los Angeles, California: School of Engineering and Applied Science, University of California at Los Angeles. 1970: 3–9 [2017-11-23]. (原始内容存档(PDF)于2020-07-28).
^。例如:Baran, Thomas A.; Oppenhiem, Alan V., INVERSION OF NONLINEAR AND TIME-VARYING SYSTEMS, Digital Signal Processing Workshop and IEEE Signal Processing Education Workshop (DSP/SPE), IEEE, 2011, doi:10.1109/DSP-SPE.2011.5739226
^BRZOZOWSKI, J.A.; McCLUSKEY, E. J. Signal Flow Graph Techniques for Sequential Circuit State Diagrams. IEEE Transactions on Electronic Computers. IEEE. 1963: 97.
^Happ, William W. Goldberg, M. F. , 编. Application of flowgraph techniques to the solution of reliability problems. Physics of Failure in Electronics (Washington, D. C.: Dept. of Commerce, Office of Technical Services). 1964, (AD434/329): 375–423. doi:10.1109/IRPS.1963.362257.
^(Robichaud 1962,chapter 5 Direct Simulation on Analog Computers Through Signal Flow Graphs) harv模板錯誤: 無指向目標: CITEREFRobichaud1962 (幫助)
參考書目
Robichaud, Louis P.A.; Maurice Boisvert; Jean Robert. Signal flow graphs and applications. Englewood Cliffs, N.J.: Prentice Hall. 1962: xiv, 214 p. [2017-10-31]. (原始内容存档于2019-03-13).