L (複雜度)

L也稱為LSPACEDLOGSPACE,是计算复杂度理论中能被确定型图灵机利用對數空间解决的判定问题集合。[1][2]

对数空间是指与输入规模成对数大小关系的可写的储存空间,大多数对数空间(LOGSPACE)算法以这种方式储存。[1]

重要的相關未解問題包括複雜度類L和P是否恆等(L = P)及複雜度類L和NL是否恆等(L = NL)。 目前已知有以下重要性质:

  • L ⊆ NL ⊆ P
  • NC1 ⊆ L ⊆ NL ⊆ NC2[3]

相关复杂度类

FL

功能性問題相關的類別是FL,在计算复杂度理论FL是一个复杂度类,是能被确定型图灵机在对数空间下解决的函数问题的集合。[4]

依照同样的原理,可以定义相应的FPFNPTFNP[4]

FL常用来定义对数空间归约(Log-space reduction,Log-空间规约)。对数空间归约指仅使用对数空间的确定型图灵机进行的规约。区别于常见的多项式时间规约,对数空间规约只允许DTM使用若干个log n(n是输入长度)空间。[5]对数空间规约在定义NL-完全NLCNL-complete)问题时候起作用。

NL

LNL的子集,NL是可以被非確定型圖靈機利用對數空間解决的判定问题集合。利用薩維奇定理的建構式證明,可得證NL包含在复杂度P之內,也就是可以被確定型圖靈機在多項式空間解决的判定问题集合中。

存在几个已知的NL-完全问题,如2SAT英语2-satisfiability

根据萨维奇定理,我们已知有以下重要性质:

RL

计算複杂度理论内,RL(Randomized Logarithmic-space,随机对数空间)[6],或者说RLP(Randomized Logarithmic-space Polynomial-time,随机对数空间多项式时间),[7]是一个複杂度类,包含能以概率图灵机,在对数空间多项式时间之内,在仅有单向容错的状况内解决的问题。此命名法与RP,这个相近但是没有对数空间限制的複杂度类是雷同的。

在定义RL时的概率图灵机,不会在回答YES的时候犯错。但是允许在回答NO的时候有小于1/3的犯错机会;这种容纳错误的方式被称作单向容错(one-sided error)。这裡的1/3不是一个绝对的数值;任何x符合[0,1/2)内都可以。因为我们可以藉由重複执行整个演算法将犯错率压缩到2?p(x)倍小(p(x)代表x的任意多项式),而不花费超过多项式时间或者对数空间的资源。

有时RL这个名称使用于使用对数空间不限时间能解决的问题其复杂度类。然而,根据Immerman–Szelepcsényi定理英语Immerman–Szelepcsényi theorem,上述这个类别可以使用概率计数器证明RL' = NL,因此一般直接使用NL来代表。

我们也知道RL ⊆ NL裡面。另外RL ⊆ BPL内,这两个复杂度相似但是BPL允许双向容错(跟RL相比多出回答YES时可以犯错这部份)。显然地有RL ⊆ L,因为其定义比起L更一般化。Nisan于1992年证明了一个较弱的去随机化,推论出RL ⊆ SC[8]SC包含一般图灵机以多项式时间和多项式对数空间解决的问题;换句话说,给予一般机器多项式对数的空间,则可以模拟机率图灵机使用对数空间的能力。

一般相信RL = L,换句话说,概率图灵机不会在对数空间下比确定型图灵机更强,多项式时间对数空间的计算方式可以完全的去随机化。这猜想的一个主要证据由Reingold et al.在2005年提出。[9]这问题的证明在无条件去随机化裡面可以说是一个被追寻的圣杯。这问题其中一个重大迈进是Omer Reingold证明了SL = L

SL

计算复杂度理论SL(Symmetric Logspace,对称对数空间),是一个复杂度类,是能被对称图灵机英语Symmetric Turing machine对数空间下解决的判定问题的集合。[10]其存在以下重要性质:

  • L ⊆ SL ⊆ NL
  • SL = co-SL
    • 并直接导致LSL = SL[11]

USTCON问题(undirected s-t connectivity,关于无向图两点之间是否存在一个路径的问题)作为一个SL完全SLCSL-complete)的SL下的重要特例,通常和SL本身被一起讨论。

2004年10月Omer Reingold成功证明USTCON问题属于L,因为USTCON问题属于SL完全,这便等于证明了SL = L。即,SL是L的一种变体。[11]

参考资料

  1. ^ 1.0 1.1 Sipser (1997), Definition 8.12, p. 295.
  2. ^ Garey & Johnson (1979), p. 177.
  3. ^ Papadimitriou, C. Chapter 16: Logarithmic Space. Computational Complexity. Addison-Wesley. 1994. ISBN 0-201-53082-1. 
  4. ^ 4.0 4.1 Àlvarez, Carme; Balcázar, José L.; Jenner, Birgit, Functional oracle queries as a measure of parallel time, STACS 91, Lecture Notes in Computer Science 480, Springer: 422–433, 1991, doi:10.1007/BFb0020817 .
  5. ^ Arora & Barak (2009) p. 88
  6. ^ Complexity Zoo: RL
  7. ^ A. Borodin, S.A. Cook, P.W. Dymond, W.L. Ruzzo, and M. Tompa. Two applications of inductive counting for complementation problems. SIAM Journal on Computing, 18(3):559–578. 1989.
  8. ^ N. Nisan. RL is contained in SC, Proceedings of ACM STOC'92, pp. 619-623, 1992.
  9. ^ O. Reingold and L. Trevisan and S. Vadhan. Pseudorandom walks in biregular graphs and the RL vs. L problem, Template:ECCC, 2004.
  10. ^ Lewis, Harry R.; Papadimitriou, Christos H., Symmetric space-bounded computation, Proceedings of the Seventh International Colloquium on Automata, Languages and Programming, Lecture Notes in Computer Science 85, Berlin: Springer: 374–384, 1980, MR 0589018, doi:10.1007/3-540-10003-2_85 
  11. ^ 11.0 11.1 Nisan, Noam; Ta-Shma, Amnon, Symmetric logspace is closed under complement, Chicago Journal of Theoretical Computer Science, 1995, Article 1, MR 1345937, Template:ECCC 

Read other articles:

Formasi AltmühltalStratigraphic range: Tithonian PreЄ Є O S D C P T J K Pg N [1][2]Singkapan dari Gamping SolnhofenJenisFormasi geologiGaris bawahFormasi Mörnsheim[1]Garis atasFormasi Rögling[1]LitologiPrimariGamping litografik[1]LocationKoordinat48°54′00″N 11°00′00″E / 48.9000°N 11.0000°E / 48.9000; 11.0000Koordinat: 48°54′00″N 11°00′00″E / 48.9000°N 11.0000°E / 48.9000; 11.00...

 

 

Artikel ini membutuhkan rujukan tambahan agar kualitasnya dapat dipastikan. Mohon bantu kami mengembangkan artikel ini dengan cara menambahkan rujukan ke sumber tepercaya. Pernyataan tak bersumber bisa saja dipertentangkan dan dihapus.Cari sumber: Jilin – berita · surat kabar · buku · cendekiawan · JSTOR (July 2014)Jilin 吉林省Provinsi TiongkokTranskripsi Name • Tionghoa吉林省 (Kota Jílín Shěng) • SingkatanJL / �...

 

 

صباح عبد الجليل معلومات شخصية الميلاد 1 يوليو 1951(1951-07-01)بغداد  الوفاة 28 فبراير 2021 (عن عمر ناهز 69 عاماً)بغداد  سبب الوفاة مرض فيروس كورونا 2019  مركز اللعب وسط الجنسية العراق  المسيرة الاحترافية1 سنوات فريق م. (هـ.) 0000– فريق الكلية العسكرية 0000– أمانة بغداد المنتخب ال...

Loafing, floating, or cherry picking in ice hockey is a manoeuver in which a player, the floater (usually a forward, but occasionally a defenceman who used to play the forward position, but can no longer skate the complete length of the ice at pace), literally loafs — spends time in idleness[1] — or casually skates behind the opposing team's unsuspecting defencemen while they are in their attacking zone. It is very similar to the cherry picking tactic sometimes used in basketball....

 

 

2018 twelfth-generation high-end smartphone produced by Apple Inc. iPhone XSiPhone XS MaxiPhone XS in GoldBrandApple Inc.Manufacturer Foxconn[1] (on contract) SloganWelcome to the big screens.Generation12thModelXS: A1920 (sold in US) A2097 (sold in Europe)A2098 (sold in Japan)A2100 (sold in China) XS Max:A1921A2101A2102 (sold in Japan)A2104 (sold in China)Compatible networksGSM, CDMA2000, EV-DO, HSPA+, LTE, LTE AdvancedFirst releasedSeptember 21, 2018; 5 years ago (2...

 

 

Scaredy PantsEpisode SpongeBob SquarePantsKartu namaNomor episodeMusim 1Episode 13aSutradaraNick Jennings (seni)Sean Dempsey (animasi)Paul Tibbitt (papan cerita)Alan Smart (pengawas)PenulisPaul TibbittPeter BurnsTanggal siar28 Oktober 1999Kronologi episode ← SebelumnyaEmployee of the Month Selanjutnya →I Was a Teenage Gary Daftar episode SpongeBob SquarePants Scaredy Pants (bahasa Indonesia: Celana Penakut) adalah episode musim pertama dari seri SpongeBob SquarePants. E...

BanjarUrang Banjarcode: bjn is deprecated   (Banjar)اورڠ بنجر Pangeran Antasari Sultan Hidayatullah II Demang Lehman Ratu Zaleha Idham Chalid Pangeran Mohammad Noor Hasan Basry Gusti Muhammad Hatta Fadjroel Rachman Olla Ramlan Arul Efansyah Jumlah populasi5,7 juta[1] (2010)Daerah dengan populasi signifikan Indonesia (Kalimantan Selatan)  Malaysia (Semenanjung) (Sabah) SingapuraRincian jumlah populasi per wilayah Kalimantan Selatan2,686.627 Ka...

 

 

Disambiguazione – Tangentopoli rimanda qui. Se stai cercando l'album di Mario Merola, vedi Tangentopoli (album). Palazzo di Giustizia di Milano, simbolo delle inchieste Antonio Di Pietro nel 1993-1994, come pubblico ministero del processo Enimont-Cusani. Di Pietro è il magistrato più famoso di Mani pulite. Mani pulite è la prima e più vasta delle inchieste che descrivono il fenomeno Tangentopoli[1][2]. Con questo termine giornalistico ci si riferisce ad una seri...

 

 

Disambiguazione – Se stai cercando l'omonima stirpe nobile tedesca che governò la contea di Weimar-Orlamünde nell'attuale Turingia a partire dal XII secolo, vedi Ascanidi (linea di Weimar-Orlamünde). Disambiguazione – Ascani rimanda qui. Se stai cercando altri significati, vedi Ascani (disambigua). Questa voce o sezione sull'argomento storia di famiglia non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da ...

Spanish canoeist Cayetano GarcíaPersonal informationNationalitySpanishBorn (2001-07-31) 31 July 2001 (age 22)Seville, SpainSportSportCanoe sprint Medal record World Championships 2022 Dartmouth C-2 500 m 2023 Duisburg C-2 500 m European Games 2023 Kraków-Małopolska C-2 500 m Cayetano García (born 31 July 2001) is a Spanish canoeist.[1] He competed in the men's C-2 1000 metres event at the 2020 Summer Olympics.[2] References ^ Cayetano García. Olympedia. Retrieved 2 A...

 

 

Gemert-BakelKota BenderaLambang kebesaranNegaraBelandaProvinsiBrabant UtaraLuas(2006) • Total123,36 km2 (4,763 sq mi) • Luas daratan122,75 km2 (4,739 sq mi) • Luas perairan0,61 km2 (24 sq mi)Populasi (1 Januari 2007) • Total27.888 • Kepadatan227/km2 (590/sq mi) Sumber: CBS, Statline.Zona waktuUTC+1 (CET) • Musim panas (DST)UTC+2 (CEST)Situs webwww.gemert-bakel.nl...

 

 

International basketball competition EuroBasket 1960 Women7th FIBA European Women'sBasketball ChampionshipTournament detailsHost countryBulgariaDatesJune 3–11Teams10Venue(s)1 (in 1 host city)Final positionsChampions Soviet Union (5th title)Official websiteOfficial website (archive)← 1958 1962 → The 1960 European Women's Basketball Championship was the 7th regional championship held by FIBA Europe for women. The competition was held in Sofia, Bulgaria and took...

電腦娛樂分級機構原名Computer Entertainment Rating Organizationコンピュータエンターテインメントレーティング機構成立時間2002年7月類型特定非營利活動法人官方語言日文網站http://www.cero.gr.jp/ 电脑娱乐分级機構(日语:コンピュータ エンターテインメント レーティング機構,英語:Computer Entertainment Rating Organization,縮寫:CERO),為日本一个专门对电子游戏进行分级的组织,用...

 

 

Questa voce sull'argomento calciatori francesi è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Jean-François BédénikNazionalità Francia Altezza180 cm Calcio RuoloAllenatore (ex portiere) Squadra Saint-Étienne (Prep. portieri) Termine carriera1º luglio 2017 - giocatore CarrieraGiovanili 19??-19??FC Seclin Squadre di club1 1997-1999 Lens 210 (-?)1999-2000 Valenciennes32 (-?)2000...

 

 

سياحةصنف فرعي من سفر جزء من القطاع الثالث للاقتصاد — commerce, management, tourism and services (en) يمتهنه سائح — رحالة — hospitality occupation (en) — tourism expert (en) الاستعمالات ترفيه — تعليم تعديل - تعديل مصدري - تعديل ويكي بيانات حافلة تقدم جولات للسائحين في مدينة أبو ظبي السياحة هي السفر بهدف الترفيه أو ا...

Asset Management Firm Virtus Investment Partners, Inc.Company typePublic companyTraded asNYSE: VRTSRussell 2000 componentS&P 600 componentIndustryAsset ManagementFoundedNovember 1, 1995HeadquartersHartford, Connecticut, U.S.Key peopleGeorge R. Aylward, President and CEO Timothy A. Holt, Chairman of the BoardProductsVirtus mutual funds; closed-end funds; retail separate accounts; exchange-traded funds; institutional investment management servicesAUM$168.9 billion (March 31, 2021)Numbe...

 

 

这是西班牙语人名,首姓或父姓是「納達爾」,次姓或母姓(母親的父姓)是「帕雷拉」。 此條目應避免有陳列雜項、瑣碎資料的部分。 (2023年7月8日)請協助將有關資料重新編排成連貫性的文章,安置於適當章節或條目內。 拉斐爾·納達爾Rafael Nadal2024年的納達爾全名Rafael Nadal Parera外號Rafa、納豆、蠻牛、紅土之王、The Matador[1][2]國家/地區 西班牙居住地 �...

 

 

English chess player John EmmsJohn Emms (2001)Full nameJohn Michael EmmsCountry EnglandBorn (1967-03-14) 14 March 1967 (age 57)TitleGrandmaster (1995)FIDE rating2428 (July 2024)Peak rating2586 (July 1999) John Michael Emms (born 14 March 1967) is an English chess Grandmaster and chess author. He tied for first in the 1997 British Championship. He was the 2002 captain of the English Olympiad team.[1] In October 2004, he also coached a woman's team in the 36th C...

Optical property of chiral chemical compounds Recording optical rotation with a polarimeter: The plane of polarisation of plane polarised light (4) rotates (6) as it passes through an optically active sample (5). This angle is determined with a rotatable polarizing filter (7). In chemistry, specific rotation ([α]) is a property of a chiral chemical compound.[1]: 244  It is defined as the change in orientation of monochromatic plane-polarized light, per unit distance�...

 

 

Wars between the Roman Republic and Celtic tribes Not to be confused with Gallic Wars. vteRoman–Gallic wars Allia River Anio River Pedum Arretium Lake Vadimo Faesulae Telamon Clastidium Silva Litana Cremona Placentia Mutina vteRoman expansion in Italy Roman–Etruscan Wars Roman-Aequian wars Roman–Latin wars Roman–Volscian wars Roman conquest of the Hernici Samnite Wars Pyrrhic War Cisalpine Gauls Social War Roman–Sabine wars Invasion of Gauls in the 4th to 3rd centuries BC Peoples at...