Read other articles:
Anis punggung-merah Status konservasi Hampir Terancam (IUCN 3.1) Klasifikasi ilmiah Kerajaan: Animalia Filum: Chordata Kelas: Aves Ordo: Passeriformes Famili: Turdidae Genus: Zoothera Spesies: Z. erythronota Nama binomial Zoothera erythronota(Sclater, 1859) Sinonim Geokichla erythronota Anis punggung-merah (Zoothera erythronota) adalah spesies burung dari keluarga Turdidae. Secara tradisional, termasuk Anis Merah ( Z. mendeni ) sebagai subspesies. Burung ini endemik di Sulawesi Ind...
Chemical compound This article may rely excessively on sources too closely associated with the subject, potentially preventing the article from being verifiable and neutral. Please help improve it by replacing them with more appropriate citations to reliable, independent, third-party sources. (May 2014) (Learn how and when to remove this template message) BNC-210Clinical dataATC codenoneLegal statusLegal status Investigational Identifiers IUPAC name L-Isoleucyl-L-tryptophan CAS Number13589-06...
American football former player (born 1973) American football player Marshall FaulkFaulk in 2023No. 28Position:Running backPersonal informationBorn: (1973-02-26) February 26, 1973 (age 51)New Orleans, Louisiana, U.S.Height:5 ft 10 in (1.78 m)Weight:211 lb (96 kg)Career informationHigh school:G. W. Carver (New Orleans)College:San Diego State (1991–1993)NFL draft:1994 / Round: 1 / Pick: 2Career history Indianapolis Colts (1994–1998) St. Loui...
Artikel ini membutuhkan judul dalam bahasa Indonesia yang sepadan dengan judul aslinya. Cenote di Hubiku, Yucatan[1] Seorang penyelam yang tengah menyelam di sebuah cenote Cenote[2][3] adalah sebuah gua vertikal atau lubang runtuhan, yang dihasilkan dari runtuhnya batuan dasar batugamping yang mengeluarkan air tanah. Istilah ini secara khusus dikaitkan dengan formasi geologi di Semenanjung Yucatán, Meksiko, di sana cenote biasanya digunakan untuk persediaan air oleh s...
Эта статья опирается на источники, аффилированные с предметом статьи или иной заинтересованной стороной. Это может вызвать сомнения в нейтральности и проверяемости представленной информации. Такие источники также не показывают значимость предмета статьи. Статью мо...
Untuk orang lain dengan nama yang sama, lihat Michelle Williams. Michelle WilliamsWilliams di Comic-Con di San Diego tahun 2012LahirMichelle Ingrid Williams09 September 1980 (umur 43)Kalispell, Montana ASPekerjaanAktrisTahun aktif1993–kiniPasanganHeath Ledger (2004–2007)AnakMatilda Ledger Michelle Ingrid Williams (lahir 9 September 1980) merupakan sebuah aktris berkebangsaan Amerika Serikat yang memenangkan nominasi Academy Award. Dia berkarier dalam dunia film sejak tahun 1994....
Kingsley Coman Coman al Bayern Monaco nel 2019 Nazionalità Francia Altezza 181[1] cm Peso 76[1] kg Calcio Ruolo Centrocampista, attaccante Squadra Bayern Monaco CarrieraGiovanili 2002-2005 Sénart-Moissy2005-2014 Paris Saint-GermainSquadre di club1 2012-2014 Paris Saint-Germain3 (0)2014-2015 Juventus15 (0)2015- Bayern Monaco199 (41)Nazionale 2011-2012 Francia U-169 (0)2012-2013 Francia U-178 (3)2013 Francia U-186 (1)2013-2014 Francia U-197 (2)...
1933 film Blood MoneyDirected byRowland BrownWritten byRowland BrownHal Long (continuity)Speed Kendall (uncredited)Produced byDarryl F. ZanuckJoseph M. Schenck (uncredited)StarringGeorge BancroftJudith AndersonFrances DeeMusic byAlfred NewmanProductioncompanyTwentieth Century PicturesDistributed byUnited ArtistsRelease date November 17, 1933 (1933-11-17) Running time65 minutesCountryUnited StatesLanguageEnglish Blood Money is a 1933 American Pre-Code crime drama film directed b...
Taça de PortugalSport Calcio TipoClub Paese Portogallo OrganizzatoreFederazione calcistica del Portogallo CadenzaAnnuale Aperturaagosto Chiusuramaggio Partecipanti172 FormulaEliminazione diretta Sito InternetSito ufficiale StoriaFondazione1938 Detentore Porto Record vittorie Benfica (26) Ultima edizioneTaça de Portugal 2023-2024 Trofeo o riconoscimento Modifica dati su Wikidata · Manuale La Taça de Portugal, nota in italiano come Coppa di Portogallo, è una competizion...
Ada usul agar artikel ini digabungkan dengan Pembekuan Besar. (Diskusikan) Bagian dari seriKosmologi fisik Ledakan Dahsyat · Alam semesta Umur alam semesta Kronologi alam semesta Alam semesta awal Masa Planck Masa penyatuan agung Nukleosintesis Big Bang Inflasi Zaman Kegelapan Latar belakang Cosmic background radiation (CBR) Gravitational wave background (GWB) Cosmic microwave background (CMB) · Cosmic neutrino background (CNB) Cosmic infrared background (INB) Ekspansi · Mas...
Cette page explique l’histoire ou répertorie les différents membres de la famille Leyniers. Famille Leyniers Armes de la famille. Armes nouvelles Blasonnement Armes anciennes : parti: au 1 d'azur au bouc rampant d'argent sur un tertre de sinople ; au 2, coupé: A. d'argent à trois oiseaux volants d'azur rangés en pal; B. d'or à trois écrevisses de sable, rangées 2 et 1, accompagnées en chef d'un croissant du même. Armes nouvelles de la branche anoblie : d'azur au bo...
A striated shelf cloud, seen in Massachusetts in July 2022. Part of a series onWeather Temperate and polar seasons Winter Spring Summer Autumn Tropical seasons Dry season Harmattan Wet season Storms Cloud Cumulonimbus cloud Arcus cloud Downburst Microburst Heat burst Derecho Lightning Volcanic lightning Thunderstorm Air-mass thunderstorm Thundersnow Dry thunderstorm Mesocyclone Supercell Tornado Anticyclonic tornado Landspout Waterspout Dust devil Fire whirl Anticyclone Cyclone Polar low Extr...
Grafico dell'arcocosecante. L'arcocosecante è la funzione trigonometrica inversa della cosecante. Indicando con y l'arcocosecante e con x la cosecante, si ha: y = arccsc ( x ) {\displaystyle y=\operatorname {arccsc}(x)} x = csc ( y ) , {\displaystyle x=\csc(y),} L'arcocosecante si denota usualmente con arccsc {\displaystyle \operatorname {arccsc} } . In LaTeX viene ottenuta tramite il comando \arccsc. Il dominio è dato dall'insieme dei punti che stanno nell'intervallo ...
Widespread 2003 to 2010 investigation by the U.S. Department of Justice The Alaska political corruption probe refers to a 2003 to 2010 widespread investigation by the Public Integrity Section of the U.S. Department of Justice, the Federal Bureau of Investigation, and the Internal Revenue Service into political corruption of nine then-current or former Alaskan state lawmakers, as well as Republican US Representative Don Young and then-US Senator, Republican Ted Stevens. Sometimes referred to a...
詹春柏 中華民國第28任總統府秘書長任期2008年5月20日—2009年9月10日 总统馬英九前任陳唐山继任廖了以 中國國民黨第15、19任秘書長任期2009年9月10日—2009年12月17日 主席馬英九前任吳敦義继任金溥聰 任期2005年5月27日—2007年2月13日 主席馬英九前任林豐正继任吳敦義 中國國民黨副主席任期2007年1月12日—2014年4月30日 主席馬英九 → 吳伯雄 → 馬英九 个人资料性别�...
Conlon Nancarrow Conlon Nancarrow (Texarkana, 27 ottobre 1912 – Città del Messico, 10 agosto 1997) è stato un compositore statunitense. Ha vissuto e lavorato in Messico per gran parte della sua vita, e nel 1955 ne ha preso la cittadinanza. Nancarrow è famoso per i pezzi scritti per Player Piano. È stato uno dei primi compositori ad usare strumenti musicali come automi meccanici, scrivendo lavori ben oltre le capacità umane. Ha vissuto gran parte della sua vita in un relativo isolamento...
American animated television and film character This article is about the character. For the 2010 film of this name, see Yogi Bear (film). For the original show and all other works featuring the character, see Yogi Bear (disambiguation). Jellystone redirects here. For the animated HBO Max series of the same name, see Jellystone! Not to be confused with Yogi Berra. Fictional character Yogi BearThe Yogi Bear Show characterFirst appearanceYogi Bear's Big Break (The Huckleberry Hound Show, 1958)C...
Formulation of the principle of stationary action As the system evolves, q traces a path through configuration space (only some are shown). The path taken by the system (red) has a stationary action (δS = 0) under small changes in the configuration of the system (δq).[1] Part of a series onClassical mechanics F = d p d t {\displaystyle {\textbf {F}}={\frac {d\mathbf {p} }{dt}}} Second law of motion History Timeline Textbooks Branches Applied Celestial Continuum Dynamics Kinematics K...
Village development committee in Bagmati Zone, NepalDhuwakot धुवाकोटVillage development committeeDhuwakotCountry NepalZoneBagmati ZoneDistrictDhading DistrictProvince BagmatiMunicipality NilkhanthaGovernment • TypeMayor–council government • Ward PresidentNamaraj DuwadiPopulation (1991) • Total4,270 • ReligionsHindu BuddhistTime zoneUTC+5:45 (Nepal Time) Dhuwakot is a village in Nilkhantha Ward 14 in the Bagm...
Structural part of trees and plants For other uses, see Branch (disambiguation). Tree and plants branches of several sizes The branches of this dead camel thorn tree within Sossusvlei are clearly visible The branches and leaves of a tree Looking up into the branch structure of a Pinus sylvestris tree Leafless tree branches during winter A branch, also called a ramus in botany, is a stem that grows off from another stem, or when structures like veins in leaves are divided into smaller veins....