凯泽窗
凯泽窗 (Kaiser window)是由贝尔实验室 的James Kaiser所提出的。凯泽窗是一個單參數的窗函数 群,用在数字信号处理 中,其定義如下[ 1] [ 2] :
w
[
n
]
=
{
I
0
(
π π -->
α α -->
1
− − -->
(
2
n
N
− − -->
1
− − -->
1
)
2
)
I
0
(
π π -->
α α -->
)
,
0
≤ ≤ -->
n
≤ ≤ -->
N
− − -->
1
0
otherwise
,
{\displaystyle w[n]=\left\{{\begin{matrix}{\frac {I_{0}\left(\pi \alpha {\sqrt {1-\left({\frac {2n}{N-1}}-1\right)^{2}}}\right)}{I_{0}(\pi \alpha )}},&0\leq n\leq N-1\\\\0&{\mbox{otherwise}},\\\end{matrix}}\right.}
其中:
N 為序列的長度
I 0 是零階的第一類修正貝索函數
α 是任意非負實數,用來調整凯泽窗的外形。在頻域 上可以在主瓣(main-lobe)寬度及旁瓣(side lobe)大小中取拾,這是窗函數設計的重要考量因素。
若N 為奇數,窗函數最大值會在
w
[
(
N
− − -->
1
)
/
2
]
=
1
,
{\displaystyle \scriptstyle w[(N-1)/2]=1,}
。若N 為偶數,窗函數最大值會在
w
[
N
/
2
− − -->
1
]
=
w
[
N
/
2
]
<
1.
{\displaystyle \scriptstyle w[N/2-1]\ =\ w[N/2]\ <\ 1.}
。
傅立葉變換
若將上述離散數列視為是連續函數,並進行傅立葉變換 :
I
0
(
π π -->
α α -->
1
− − -->
(
2
t
(
N
− − -->
1
)
T
)
2
)
I
0
(
π π -->
α α -->
)
⏟ ⏟ -->
w
0
(
t
)
⟺ ⟺ -->
F
(
N
− − -->
1
)
T
⋅ ⋅ -->
sinh
-->
(
π π -->
α α -->
2
− − -->
(
(
N
− − -->
1
)
T
⋅ ⋅ -->
f
)
2
)
I
0
(
π π -->
α α -->
)
⋅ ⋅ -->
π π -->
α α -->
2
− − -->
(
(
N
− − -->
1
)
T
⋅ ⋅ -->
f
)
2
⏟ ⏟ -->
W
0
(
f
)
.
{\displaystyle \underbrace {\frac {I_{0}\left(\pi \alpha {\sqrt {1-\left({\frac {2t}{(N-1)T}}\right)^{2}}}\right)}{I_{0}(\pi \alpha )}} _{w_{0}(t)}\quad {\stackrel {\mathcal {F}}{\Longleftrightarrow }}\quad \underbrace {\frac {(N-1)T\cdot \sinh \left(\pi {\sqrt {\alpha ^{2}-\left((N-1)T\cdot f\right)^{2}}}\right)}{I_{0}(\pi \alpha )\cdot \pi {\sqrt {\alpha ^{2}-\left((N-1)T\cdot f\right)^{2}}}}} _{W_{0}(f)}.}
兩個不同α參數凯泽窗的傅立葉變換
w 0 (t )的最大值為w 0 (0) = 1. 上述的w [n]數列為以下函收的取様:
w
0
(
t
− − -->
(
N
− − -->
1
)
T
2
)
⋅ ⋅ -->
rect
-->
(
t
− − -->
(
N
− − -->
1
)
T
/
2
N
T
)
,
{\displaystyle w_{0}\left(t-{\tfrac {(N-1)T}{2}}\right)\cdot \operatorname {rect} \left({\tfrac {t-(N-1)T/2}{NT}}\right),}
,在間隔T的時間進行取樣。
而且rect()為矩形函数 . W 0 (f )主瓣後的第一個零點在:
f
=
1
+
α α -->
2
N
T
,
{\displaystyle f={\frac {\sqrt {1+\alpha ^{2}}}{NT}},}
[ 3]
調整α 可以在主瓣的寬度及旁瓣大小中進行取捨。若α 增加,W 0 (f )主瓣的寬度增加,而旁瓣的大小減小,如右圖所示。α = 0會對應長方形的窗函數。若α 增加,時域及頻率下凯泽窗的形狀都會接近高斯 曲線。凯泽窗在頻率0附近的集中程度是幾乎最佳化的(Oppenheim et al. , 1999)。
腳註
^ Harris, Fredric j. On the use of Windows for Harmonic Analysis with the Discrete Fourier Transform (PDF) . Proceedings of the IEEE. Jan 1978, 66 (1): 73–74 [2017-01-29 ] . doi:10.1109/PROC.1978.10837 . (原始内容存档 (PDF) 于2017-03-19). Article on FFT windows which introduced many of the key metrics used to compare windows.
^ Kaiser, James F.; Ronald W. Schafer. On the Use of the I0-Sinh Window for Spectrum Analysis. IEEE Transactions on Acoustics, Speech and Signal Processing. February 1980,. ASSP-28 (1): 105–107.
^ Kaiser, James F.; Schafer, Ronald W. On the use of the I0 -sinh window for spectrum analysis. IEEE Transactions on Acoustics, Speech, and Signal Processing. 1980, 28 : 105–107. doi:10.1109/TASSP.1980.1163349 .
參考資料
Oppenheim, A. V.; Schafer, R. W.; Buck J. R. Discrete-time signal processing . Upper Saddle River, N.J.: Prentice Hall. 1999. ISBN 0-13-754920-2 .
Kaiser, J. F. (1966). Digital Filters. In Kuo, F. F. and Kaiser, J. F. (Eds.), System Analysis by Digital Computer , chap. 7. New York, Wiley.
Craig Sapp, Kaiser-Bessel Derived Window Examples and C-language Implementation , Music 422 / EE 367C: Perceptual Audio Coding (Stanford University course page, 2001).