仿制贝

铜包金贝,春秋晚期

仿制贝,或称仿贝仿制贝币等,指中国时期使用、石、蚌、骨、泥、金属等材料模仿货贝形状制作的一种贝币。仿制贝的产生和使用都具有地域性,在部分地区是为了弥补真贝的不足[1],用来行使货币职能,部分地区是用作装饰品或冥币,还有的仅是用作冥币。[2]

材质

用玉或玉髓磨制而成的玉贝和以滑石等石料磨成的石贝主要出土于中原地区。由于玉石的特性,玉贝质地坚硬,表面有光泽,根据玉质的不同,可能呈现灰白、油墨、翠绿等不同的颜色。玉贝和石贝的形状通常与货贝相似,制作粗朴,有些玉贝腹部中间会磨有纵沟,石贝的腹部中间都磨有竖线,竖线两侧刻有模仿货币纹理的横纹,玉贝和石贝的小端多钻有孔。玉贝在青海河南陕西等多个省份均有出土,石贝则主要出土于河南与山西等地。由兽骨刻制而成的骨贝和用壳刻成的蚌贝,也主要流通于中原地区,呈椭圆形片状。骨贝外观多为浅黄色,也有因与铜器接触而带有绿色的,蚌贝又被称为䖴贝、珧贝,多为乳白色。骨贝和蚌贝中间刻有纵沟,沟两侧刻有横槽,两端钻有孔。骨贝在青海、河南、山西等地有出土,蚌贝在青海、河南等地有出土。对于石贝、骨贝和蚌贝属于流通货币还是冥币,尚有不同的观点[3]陶贝由泥土烧制而成,为仿贝冥币,略呈椭圆形,灰褐色,有纵沟和横槽,多无穿孔,在河南、山西的部分地区曾有出土。[2]

与上述几种仿贝有着明显不同的是金属铸贝,1974年曾于河北中山国墓葬中出土三枚金贝和四枚银贝,但最常见的还是青铜铸贝。青铜铸贝又称铜贝,产生于商代晚期,是中国最早的金属铸币,在商、西周两代以及春秋战国时期的等地均有使用。按照形制,铜贝可分为无文铜贝和蚁鼻钱两大类。无文铜贝主要流通于黄河中下游的中原地区,铸行于商代晚期到战国早期;蚁鼻钱又称有文铜贝、鬼脸钱,是春秋晚期至战国末期的楚国铸币。此外还有以磨背式铜贝外包一层薄薄的黄金而成的包金铜贝,包金铜贝或称贴金铜贝。[2]

类别 图片 年代 材质 其他说明
玉贝 夏、商、西周 或者玉髓磨制 流通于中原地区。已发现的玉贝制作都比较粗朴,形状同天然贝币相近,腹部中间或磨有纵沟,而且小端多有穿孔。玉贝通常用质地坚硬的玉材制作,颜色上呈灰白色、油墨色或翠绿色。青海、河南、陕西等地都曾有出土。[2]:16
石贝   夏、商、西周 滑石或者其他石料磨制 石贝多出土于河南、山西等中原地区的商周墓葬中。可能是一种流通货币,也可能是装饰品或者冥币。已发现的石贝制作都比较粗朴,形状同天然贝币货贝”相近,腹部中间或磨有竖线,竖线两侧刻有若干横槽,而且有的石贝的小端会有穿孔。[2]:16
骨贝 夏、商、西周 兽骨刻制 骨贝一般呈浅黄色,有的可能是因为与铜器接触而会带有一些绿色。形状上,骨贝一般为椭圆形片状,虽然与天然贝币不同,但出土的骨贝中间刻有纵沟,纵沟两侧刻有若干横槽,背部的两端钻有穿孔,这些与磨背天然贝币相近。骨贝可能是一种流通货币,也可能是装饰品或者冥币。骨贝在青海、河南、山西等地均有出土,而且是仿制贝中出土最多的一种。[2]:17
蚌贝 夏、商、西周 蚌壳刻制 或称䖴贝、珧贝,一般呈蚌壳的乳白色。形状上,蚌贝为椭圆形片状,这虽与天然贝币的不同,但它正面的中间刻有纵沟,纵沟两侧刻有若干横槽,背部的两端钻有穿孔,这些都与磨背天然贝币相近。蚌贝一般发现于中原地区,可能是一种流通货币,也可能是装饰品或者冥币。骨贝在青海、河南等地的春秋战国墓葬中均有出土。[2]:17
陶贝 夏、商、西周 泥土烧制 灰褐色,略呈椭圆形。陶贝正面的中间印有纵沟,纵沟两侧刻有若干横槽,背部的两端多没有穿孔。[2]:17
铜贝 夏、商、周 青铜铸造 详见“铜贝”条目
银贝 战国 白银铸造 中山国铸行的一种仿制贝币,形状与磨背式货贝相似,正面的中间印有纵沟,纵沟两侧铸有若干横线,背部扁平。1974年在河北省平山中山王墓出土过四枚金贝,它们长1.5-2.1厘米,宽1.1-1.5厘米,共重11.5克。[2]:28
金贝 战国 黄金铸造 中山国铸行的一种仿制贝币,正面的中间印有纵沟,纵沟两侧铸有七条横线,背部扁平,小端有穿孔。1974年在河北省平山中山王墓出土过三枚金贝,它们大小相同,含金量为92%,长1.1厘米,宽0.8厘米,重3.14克[2]:23。1984年年底,河北省灵寿县也曾出土过金贝。[4]:11

参见

参考

  1. ^ 浅谈我国钱币的历史与演变. 凤凰网财经-中国金币收藏网. 2010-03-16 [2015-04-07]. (原始内容存档于2018-09-30). 
  2. ^ 2.00 2.01 2.02 2.03 2.04 2.05 2.06 2.07 2.08 2.09 朱活主编. 中国钱币大辞典·先秦编. 北京: 中华书局. 1995. ISBN 9787101012415. 
  3. ^ 方圆天地宽 人文精神新. 金融时报. 2013-05-10 [2015-04-07]. (原始内容存档于2019-07-25). 
  4. ^ 汪庆正主编. 中国历代货币大系·先秦货币. 上海: 上海人民出版社. 1988. ISBN 7-208-00309-2. 

Read other articles:

Jongmyo JeryeUpacara Agung JongmyoNama KoreaHangul종묘제례 atau 종묘대제 Hanja宗廟祭禮 atau 宗廟大祭 Alih AksaraJongmyo Jerye atau Jongmyo DaejeMcCune–ReischauerChongmyo Cherye atau Chongmyo Taeche Jongmyo Jerye (Upacara Jongmyo) atau Jongmyo Daeje (Upacara Agung Jongmyo)[1] adalah upacara yang dilaksanakan di Kuil Jongmyo di Seoul, Korea Selatan.[2][3] Jongmyo Daeje yang diselenggarakan setiap satu tahun sekali merupakan perayaan persembahan, penghor...

 

American election 1875 Wisconsin gubernatorial election ← 1873 November 2, 1875 1877 →   Nominee Harrison Ludington William Robert Taylor Party Republican Democratic Alliance — Reform Popular vote 85,155 84,314 Percentage 50.07% 49.58% County resultsLudington :      50–60%      60–70%      70–80%      80–90%      >90%Tay...

 

Синелобый амазон Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:ЗавропсидыКласс:Пт�...

London Underground and railway station For the former station in Suffolk, see Kenton railway station (Suffolk). For the former station in Northumberland, see Kenton Bank railway station. Kenton KentonLocation of Kenton in Greater LondonLocationKentonLocal authorityLondon Borough of BrentManaged byLondon Underground[1]OwnerNetwork RailStation codeKNTDfT categoryENumber of platforms2Fare zone4OSINorthwick Park [2]London Underground annual entry and exit2018 1.83 million[3 ...

 

Beni SetiaPekerjaanPenulisKebangsaan Indonesia Beni Setia, (lahir di Bandung, Jawa Barat, 1954; umur 70 tahun), adalah seorang sastrawan berkebangsaan Indonesia. Namanya dikenal melalui karya-karyanya berupa cerita pendek, esai sastra, dan puisi yang dipublikasikan ke berbagai media massa.[1][2] Latar belakang Pendidikannya dimulai dari Sekolah Rakyat (1966), Sekolah Menengah pertama (1969), Sekolah Teknik Menengah/STM Konstruksi (1970, tidak tamat). Pendidikan terakhirnya Sek...

 

South African record label Ambitiouz EntertainmentOfficial logoParent companyAmbitiouz Group (Pty) LtdFounded2015; 9 years ago (2015)FounderKgosi MahumapeloDistributor(s)Nyce EntertainmentGenreHip-hopCountry of origin South AfricaLocationMidrand, South AfricaOfficial websiteambitiouz.co.za Ambitiouz Entertainment is a South African independent record label owned and founded by Kgosi Mahumapelo. The label was founded in April 2015 and houses notable acts including, G-Sta...

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (نوفمبر 2019) ليونيل سميث بيلي   معلومات شخصية الميلاد 5 فبراير 1828   لندن  الوفاة 28 مارس 1906 (78 سنة)   لندن  مواطنة المملكة المتحدة لبريطانيا العظمى وأيرلندا  �...

 

Epic poem by Chittadhar Hridaya Chittadhar Hridaya, sketched in jail, ca. 1944. Illustration from Sugata Saurabha showing the Buddha's father Śuddhodana. Sugata Saurabha (Nepali: सुगत सौरभ) is an epic poem in Nepal Bhasa by Chittadhar Hridaya (1906 – 1982), one of the greatest literary figures from Nepal in the 20th century. Sugata Saurabha, meaning “The Fragrant Life of the Buddha”, is based on the life story of Gautama Buddha.[1] Written in jail Sugata Saurabh...

 

American individualist anarchist (1854–1939) For the American police officer, see Benjamin B. Tucker. For the English civil servant, see Benjamin Tucker (civil servant). This article contains too many or overly lengthy quotations. Please help summarize the quotations. Consider transferring direct quotations to Wikiquote or excerpts to Wikisource. (January 2024) Benjamin TuckerBornBenjamin Ricketson Tucker(1854-04-17)April 17, 1854South Dartmouth, Massachusetts, United StatesDiedJune 22, 193...

Crowe GlobalJenisSwiss VereinIndustriJasa profesionalDidirikan1915 (1915) (Horwath & Horwath) 1960 (1960) (Horwath & Horwath International) 1991 (1991) (bergabung dengan Crowe LLP, dan namanya diubah menjadi Crowe Horwath pada tahun 2009)2018 (2018) (Crowe)PendiriFred P. Crowe Sr. Ernest dan Edmund HorwathKantorpusatNew York City, Amerika SerikatWilayah operasiSeluruh duniaTokohkunciDavid Mellor, CEOJasaAuditPajakKonsultansi manajemenPenasehatan keuanganPenasehatan...

 

Disambiguazione – Blitzkrieg rimanda qui. Se stai cercando altri significati, vedi Blitzkrieg (disambigua). Questa voce o sezione sull'argomento seconda guerra mondiale è priva o carente di note e riferimenti bibliografici puntuali. Sebbene vi siano una bibliografia e/o dei collegamenti esterni, manca la contestualizzazione delle fonti con note a piè di pagina o altri riferimenti precisi che indichino puntualmente la provenienza delle informazioni. Puoi migliorare questa voc...

 

2003 single by In-Grid In-tangoSingle by In-Gridfrom the album Rendez-vous B-sideWe Tango AloneReleased2003Length3:27LabelX-EnergySongwriter(s)Marco Soncini, Ingrid AlberiniProducer(s)Alfredo Larry PignagnoliIn-Grid singles chronology Tu es foutu (2001) In-tango (2003) I'm folle de toi (2003) In-tango is a song by Italian dancer and singer-songwriter In-Grid, released in 2003. The English version of this song, entitled We Tango Alone, was included as a B-side track in Italy and issued as its ...

Part of a series onAdvaita SchoolsClassical Advaita Vedanta Bhāmatī Vivarana Shaivism/Tantra/Nath Kashmir Shaivism (Pratyabhijna) Nath (Inchegeri Sampradaya) New movements Neo-Advaita Nondualism ConceptsClassical Advaita vedanta Atman Brahman Avidya Ajativada Mahāvākyas Satchitananda Om Tat Tvam Asi Three Bodies Aham Cause and effect Kosha Neti neti Kashmir Shaivism Pratyabhijna so'ham Practices Guru Meditation Svādhyāya Sravana, manana, nididhyasana Jnana yoga Rāja yoga Unfoldment of ...

 

For related races, see 2014 United States gubernatorial elections. 2014 Arizona gubernatorial election ← 2010 November 4, 2014 2018 → Turnout47.52% 8.13pp [1]   Nominee Doug Ducey Fred DuVal Party Republican Democratic Popular vote 805,062 626,921 Percentage 53.44% 41.62% County results Congressional district resultsDucey:      40–50%      50–60%      60–70%   &#...

 

Former jihadist organisation Caucasus EmirateИмарат КавказLeadersDokka Umarov †[1]Aliaskhab Kebekov †Magomed Suleimanov †Foundation7 October 2007; 16 years ago (7 October 2007)[2]DissolvedAugust 2016; 7 years ago (August 2016)Active regionsNorth Caucasus, West AsiaIdeologyPan-Islamism[3]Salafist-Takfiri Jihadism[4][5]Separatism[4]Islamic fundamentalism[4]Anti-imp...

This article is about the metropolitan area in Australia. For the local government area, see City of Wollongong. City in New South Wales, AustraliaWollongongNew South WalesCity centre and surroundsCourt HouseCrown StreetFlagstaff Hill LighthouseHeritage HotelWollongong Harbour, Cove BeachWollongongCoordinates34°25′38″S 150°53′38″E / 34.427243°S 150.893915°E / -34.427243; 150.893915Population280,153 (UCL 2021)[1][2]Postcode(s)2500Elevation5&#...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Februari 2023. Antipaus Kalistus III (1168-1178) mengangkat 7 kardinal semu.[1] Gero Guilielmus Johannes Nicolaus Stephanus Parisiensis Ughicio Wilfredus Referensi ^ Źródło: J.M. Brixius, Die Mitglieder des Kardinalkollegiums von 1130-1181, Berlin 1912, s...

 

ВёрсткаПолоса Гранка Вакат[англ.] Версо[нем.] Вподвёрстку Врезка Втяжка Трекинг Вывод Выворотка Выноска Ин-кварто Ин-октаво Ин-фолио Интерлиньяж Заголовок Колонтитул Колонцифра Колофон Красная строка Норма Неполная полоса Отбивка Выключка Пагинация Перевёрстка Поля[а�...

Subfield of mathematical optimization A minimum spanning tree of a weighted planar graph. Finding a minimum spanning tree is a common problem involving combinatorial optimization. Combinatorial optimization is a subfield of mathematical optimization that consists of finding an optimal object from a finite set of objects,[1] where the set of feasible solutions is discrete or can be reduced to a discrete set. Typical combinatorial optimization problems are the travelling salesman proble...

 

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (ديسمبر 2018)   لمعانٍ أخرى، طالع القلعة (توضيح). القلعة تقسيم إداري البلد  اليمن مديرية مديرية سيئون المسؤولون ...