時差測距(time-of-flight,或稱'飛時測距')的3D雷射掃描儀是一種主動式(active)的掃描儀,其使用雷射光探測目標物。圖中的光達即是一款以時差測距為主要技術的雷射測距儀(laser rangefinder)。此雷射測距儀確定儀器到目標物表面距離的方式,是測定儀器所發出的雷射脈衝往返一趟的時間換算而得。即儀器發射一個雷射光脈衝,雷射光打到物體表面後反射,再由儀器內的探測器接收訊號,並記錄時間。由於光速(speed of light) 為一已知條件,光訊號往返一趟的時間即可換算為訊號所行走的距離,此距離又為儀器到物體表面距離的兩倍,故若令為光訊號往返一趟的時間,則光訊號行走的距離等於。顯而易見的,時差測距式的3D雷射掃描儀,其量測精度受到我們能多準確地量測時間,因為大約3.3皮秒(picosecond;微微秒)的時間,光訊號就走了1公釐。
雷射測距儀每發一個雷射訊號只能測量單一點到儀器的距離。因此,掃描儀若要掃描完整的視野(field of view),就必須使每個雷射訊號以不同的角度發射。而此款雷射測距儀即可透過本身的水平旋轉或系統內部的旋轉鏡(rotating mirrors)達成此目的。旋轉鏡由於較輕便、可快速環轉掃描、且精度較高,是較廣泛應用的方式。典型時差測距式的雷射掃描儀,每秒約可量測10,000到100,000個目標點。
三角測距(Triangulation)
三角測距3D雷射掃描儀,也是屬於以雷射光去偵測環境情的主動式掃描儀。相對於飛時測距法,三角測距法3D雷射掃描儀發射一道雷射到待測物上,並利用攝影機尋找待測物上的雷射光點。隨著待測物(距離三角測距3D雷射掃描儀)距離的不同,雷射光點在攝影機畫面中的位置亦有所不同。這項技術之所以被稱為三角型測距法,是因為雷射光點、攝影機,與雷射本身構成一個三角形。在這個三角形中,雷射與攝影機的距離、及雷射在三角形中的角度,是我們已知的條件。透過攝影機畫面中雷射光點的位置,我們可以決定出攝影機位於三角形中的角度。這三項條件可以決定出一個三角形,並可計算出待測物的距離。在很多案例中,以一線形雷射條紋取代單一雷射光點,將雷射條紋對待測物作掃描,大幅加速了整個測量的行程。National Research Council of Canada是致力於研發三角測距雷射掃描技術的協會之一(1978)。[1]
François Blais, Michel Picard, Guy Godin, "Accurate 3D acquisition of freely moving objects," Proceedings. 2nd International Symposium on 3D Data Processing, Visualization and Transmission, 2004, pp.422-429.
Qian Chen, Toshikazu Wada, "A light Modulation/Demodulation Method for Real-Time 3D Imaging," Fifth International Conference on 3-D Digital Imaging and Modeling, 2005, pp.15-21.
Brian Curless, "From Range Scans to 3D Models," ACM SIGGRAPH Computer Graphics, Vol. 33, Issue 4, Nov 2000, pp.38-41.
Joseph P. Lavelle, Stefan R. Schuet, Daniel J. Schuet, "High Speed 3D Scanner with Real-Time 3D Processing," 2004 IEEE International Workshop on Imaging Systems and Techniques, 2004, pp.13-17.
Katsushi Lkeuchi, "Modeling from Reality," Third International Conference on 3-D Digital Imaging and Modeling, 2001, pp.117-124.
^Roy Mayer, Scientific Canadian: Invention and Innovation From Canada's National Research Council, Vancouver: Raincoast Books, 1999.