Nhóm symplectic (tức là đối ngẫu) là một loại nhóm Lie hữu hạn cùng với các nhóm unita, trực giao, tuyến tính, Lie ngoại lệ, Lorentz, Poincare, Quaternion, và một số nhóm khác đều là nhóm Lie. (hữu hạn)
Định nghĩa
Định nghĩa bằng ma trận
Tồn tại số nguyên dương cùng với trường , tập là nhóm symplectic nếu và chỉ nếu
với và là các ma trận đơn vị vuông cấp .
Nhóm symplectic có độ đo hoặc .
Định nghĩa một cách tổng quát
Cho là một trường và ánh xạ song tuyến tính không suy biến xen kẽ trên không gian vectơ qua . Một -nhóm symplectic là nhóm tất cả các biến đổi tuyến tính trên bảo toàn -tính chất i.e. thỏa mãn :
.
Thật vậy, định nghĩa trên đúng với mọi ánh xạ song tuyến tính không suy biến xen kẽ, chúng ta thường giả định rằng ma trận song tuyến tính xen kẽ là không suy biến.
Nguồn
[1]
Tham khảo