Теорема ван Обеля про чотирикутник

Теорема ван Обеля (van Aubel[1] або van Obel[2]) — теорема фламандського математика ван Обеля (Henricus Hubertus van Aubel), доведена 1878 року[3].

Є окремим випадком теореми Петра — Дугласа — Неймана[en][1], а зі самої теореми ван Обеля випливає теорема Тебо.

Формулювання

Теорему можна застосувати до чотирикутників, що самоперетинаються

Якщо на сторонах довільного чотирикутника без самоперетинів побудувати зовні квадрати і з'єднати центри протилежних, то отримані відрізки будуть рівними і перпендикулярними.

Див. також

Примітки

  1. а б Weisstein, Eric W. Теорема ван Обеля(англ.) на сайті Wolfram MathWorld.
  2. Van Obel Theorem and Barycentric coordinates (англ.)
  3. H. H. van Aubel, (1878), «Note concernant les centres de carrés construits sur les côtés d'un polygon quelconque»(фр.), Nouvelle Correspondance Mathématique 4, 1878, pp. 40-44

Література

  • van Aubel, H. H. «Note concernant les centres de carrés construits sur les côtés d'un polygon quelconque.» Nouv. Corresp. Math. 4, 40-44, 1878.(фр.)
  • Понарин Я. П. Элементарная геометрия. В 2 т. — М. : МЦНМО, 2004. — С. 24. — ISBN 5-94057-170-0.
  • Дм. Ефремов. Новая геометрия треугольника 1902 год
  • Зетель С. И. Новая геометрия треугольника. — М. : Учпедгиз, 1962. — 153 с.

Посилання