Нехай — дійсно-значна випадкова величина з математичним сподіванням рівним 0 і скінченноюдисперсією; позначимо — стандартний дійснозначний Вінерівський процес (броунівський рух). Тоді існує марківський момент часу (відносно природної фільтрації породженої вінерівським процесом ), такий що має закон розподілу той самий, що і в.в. ,
Тоді існує неспадна послідовність марківських моментів часу така що має той самий сукупний розподіл що й частинні суми і є незалежними однаково розподіленими випадковими величинами з наступною властивістю
і
Значення для фінансової математики і фінансів
Теореми Скорохода мають попереджувальний характер для моделювання фінансових даних. Конкретніше, якщо маємо деяку модель фінансових даних, що змодельована деяким процесом і далі для практичного застосування ми збираємо дані для цього процесу за деяким стохастичним принципом (наприклад трансакція за трансакцією), то як не дивно розподіл зібраних даних суттєво відрізняється від розподілу закладеного в моделі.