Теорема Брука[en] — Райзера[en] — Човли[en] — це результат у комбінаториці блок-схем. Теорема стверджує, що якщо (v, b, r, k, λ)-схема існує з v = b (симетична блок-схема), то:
- якщо v парне, то k − λ є квадратом;
- якщо v непарне, то таке діофантове рівняння має нетривіальний розв'язок:
- .
Теорему довели для випадку проєктивних площин Брук та Райзер. На симетричні схеми теорему розширили Райзер та Човла.
Проєктивні площини
В частковому випадку симетричних схем з , тобто проєктивних площин, теорему (відому в цьому разі як теорема Брука — Райзера) можна сформулювати так: якщо скінченна проєктивна площина порядку q існує і q порівнянне з 1 чи 2 (mod 4), то q має бути сумою двох квадратів. Зауважимо, що для проєктивної площини для параметрів схеми виконується . Отже, в такому разі v завжди непарне.
Теорема, наприклад, виключає існування проєктивних площин порядків 6 і 14, але дозволяє існування площин порядків 10 і 12. Оскільки за допомогою комбінації теорії кодування з великомасштабним комп'ютерним пошуком показано, що проєктивної площини порядку 10 не існує, умови теореми очевидно не достатньо для існування схеми. Проте критерій неіснування не відомий.
Зв'язок із матрицями інцидентності
Існування симетричної (v, b, r, k, λ)-схеми еквівалентне існуванню v × v матриці інцидентності R з елементами 0 і 1, що задовольняє умові
- ,
де E є v × v одиничною матицею, а J — v × v матрицею, в якій усі елементи дорівнюють 1. По суті, теорема Брука — Райзера — Човли є твердженням про необхідні умови існування раціональної v × v матриці R, яка задовольняє цьому рівнянню. Фактично, умови, закладені в теоремі Брука — Райзера — Човли, є не просто необхідними, а й достатні для існування таких раціональних матриць R. Їх можна вивести з теореми Мінковського — Гассе[en] про раціональну еквівалентність квадратичних форм.
Примітки
Література
Посилання