Таблиця інтегралів тригонометричних функцій
Це список інтегралів (первісних функцій ) тригонометричних функцій . Для функцій що містять і показникові й тригонометричні функції, дивись Таблиця інтегралів експоненціальних функцій . Для повнішого списку інтегралів дивись Таблиця інтегралів . Дивись також тригонометричні інтеграли .
У всіх цих формулах під a розуміється ненульова константа , C означає сталу інтегрування .
Функція, що містять тільки синус
∫ ∫ -->
sin
-->
a
x
d
x
=
− − -->
1
a
cos
-->
a
x
+
C
{\displaystyle \int \sin ax\;dx=-{\frac {1}{a}}\cos ax+C\,\!}
∫ ∫ -->
sin
2
-->
a
x
d
x
=
x
2
− − -->
1
4
a
sin
-->
2
a
x
+
C
=
x
2
− − -->
1
2
a
sin
-->
a
x
cos
-->
a
x
+
C
{\displaystyle \int \sin ^{2}{ax}\;dx={\frac {x}{2}}-{\frac {1}{4a}}\sin 2ax+C={\frac {x}{2}}-{\frac {1}{2a}}\sin ax\cos ax+C\!}
∫ ∫ -->
x
sin
2
-->
a
x
d
x
=
x
2
4
− − -->
x
4
a
sin
-->
2
a
x
− − -->
1
8
a
2
cos
-->
2
a
x
+
C
{\displaystyle \int x\sin ^{2}{ax}\;dx={\frac {x^{2}}{4}}-{\frac {x}{4a}}\sin 2ax-{\frac {1}{8a^{2}}}\cos 2ax+C\!}
∫ ∫ -->
x
2
sin
2
-->
a
x
d
x
=
x
3
6
− − -->
(
x
2
4
a
− − -->
1
8
a
3
)
sin
-->
2
a
x
− − -->
x
4
a
2
cos
-->
2
a
x
+
C
{\displaystyle \int x^{2}\sin ^{2}{ax}\;dx={\frac {x^{3}}{6}}-\left({\frac {x^{2}}{4a}}-{\frac {1}{8a^{3}}}\right)\sin 2ax-{\frac {x}{4a^{2}}}\cos 2ax+C\!}
∫ ∫ -->
sin
-->
b
1
x
sin
-->
b
2
x
d
x
=
sin
-->
(
(
b
1
− − -->
b
2
)
x
)
2
(
b
1
− − -->
b
2
)
− − -->
sin
-->
(
(
b
1
+
b
2
)
x
)
2
(
b
1
+
b
2
)
+
C
(for
|
b
1
|
≠ ≠ -->
|
b
2
|
)
{\displaystyle \int \sin b_{1}x\sin b_{2}x\;dx={\frac {\sin((b_{1}-b_{2})x)}{2(b_{1}-b_{2})}}-{\frac {\sin((b_{1}+b_{2})x)}{2(b_{1}+b_{2})}}+C\qquad {\mbox{(for }}|b_{1}|\neq |b_{2}|{\mbox{)}}\,\!}
∫ ∫ -->
sin
n
-->
a
x
d
x
=
− − -->
sin
n
− − -->
1
-->
a
x
cos
-->
a
x
n
a
+
n
− − -->
1
n
∫ ∫ -->
sin
n
− − -->
2
-->
a
x
d
x
(for
n
>
0
)
{\displaystyle \int \sin ^{n}{ax}\;dx=-{\frac {\sin ^{n-1}ax\cos ax}{na}}+{\frac {n-1}{n}}\int \sin ^{n-2}ax\;dx\qquad {\mbox{(for }}n>0{\mbox{)}}\,\!}
∫ ∫ -->
d
x
sin
-->
a
x
=
1
a
ln
-->
|
tan
-->
a
x
2
|
+
C
{\displaystyle \int {\frac {dx}{\sin ax}}={\frac {1}{a}}\ln \left|\tan {\frac {ax}{2}}\right|+C}
∫ ∫ -->
d
x
sin
n
-->
a
x
=
cos
-->
a
x
a
(
1
− − -->
n
)
sin
n
− − -->
1
-->
a
x
+
n
− − -->
2
n
− − -->
1
∫ ∫ -->
d
x
sin
n
− − -->
2
-->
a
x
(for
n
>
1
)
{\displaystyle \int {\frac {dx}{\sin ^{n}ax}}={\frac {\cos ax}{a(1-n)\sin ^{n-1}ax}}+{\frac {n-2}{n-1}}\int {\frac {dx}{\sin ^{n-2}ax}}\qquad {\mbox{(for }}n>1{\mbox{)}}\,\!}
∫ ∫ -->
x
sin
-->
a
x
d
x
=
sin
-->
a
x
a
2
− − -->
x
cos
-->
a
x
a
+
C
{\displaystyle \int x\sin ax\;dx={\frac {\sin ax}{a^{2}}}-{\frac {x\cos ax}{a}}+C\,\!}
∫ ∫ -->
x
n
sin
-->
a
x
d
x
=
− − -->
x
n
a
cos
-->
a
x
+
n
a
∫ ∫ -->
x
n
− − -->
1
cos
-->
a
x
d
x
(for
n
>
0
)
{\displaystyle \int x^{n}\sin ax\;dx=-{\frac {x^{n}}{a}}\cos ax+{\frac {n}{a}}\int x^{n-1}\cos ax\;dx\qquad {\mbox{(for }}n>0{\mbox{)}}\,\!}
∫ ∫ -->
− − -->
a
2
a
2
x
2
sin
2
-->
n
π π -->
x
a
d
x
=
a
3
(
n
2
π π -->
2
− − -->
6
)
24
n
2
π π -->
2
(for
n
=
2
,
4
,
6...
)
{\displaystyle \int _{\frac {-a}{2}}^{\frac {a}{2}}x^{2}\sin ^{2}{\frac {n\pi x}{a}}\;dx={\frac {a^{3}(n^{2}\pi ^{2}-6)}{24n^{2}\pi ^{2}}}\qquad {\mbox{(for }}n=2,4,6...{\mbox{)}}\,\!}
∫ ∫ -->
sin
-->
a
x
x
d
x
=
∑ ∑ -->
n
=
0
∞ ∞ -->
(
− − -->
1
)
n
(
a
x
)
2
n
+
1
(
2
n
+
1
)
⋅ ⋅ -->
(
2
n
+
1
)
!
+
C
{\displaystyle \int {\frac {\sin ax}{x}}dx=\sum _{n=0}^{\infty }(-1)^{n}{\frac {(ax)^{2n+1}}{(2n+1)\cdot (2n+1)!}}+C\,\!}
∫ ∫ -->
sin
-->
a
x
x
n
d
x
=
− − -->
sin
-->
a
x
(
n
− − -->
1
)
x
n
− − -->
1
+
a
n
− − -->
1
∫ ∫ -->
cos
-->
a
x
x
n
− − -->
1
d
x
{\displaystyle \int {\frac {\sin ax}{x^{n}}}dx=-{\frac {\sin ax}{(n-1)x^{n-1}}}+{\frac {a}{n-1}}\int {\frac {\cos ax}{x^{n-1}}}dx\,\!}
∫ ∫ -->
d
x
1
± ± -->
sin
-->
a
x
=
1
a
tan
-->
(
a
x
2
∓ ∓ -->
π π -->
4
)
+
C
{\displaystyle \int {\frac {dx}{1\pm \sin ax}}={\frac {1}{a}}\tan \left({\frac {ax}{2}}\mp {\frac {\pi }{4}}\right)+C}
∫ ∫ -->
x
d
x
1
+
sin
-->
a
x
=
x
a
tan
-->
(
a
x
2
− − -->
π π -->
4
)
+
2
a
2
ln
-->
|
cos
-->
(
a
x
2
− − -->
π π -->
4
)
|
+
C
{\displaystyle \int {\frac {x\;dx}{1+\sin ax}}={\frac {x}{a}}\tan \left({\frac {ax}{2}}-{\frac {\pi }{4}}\right)+{\frac {2}{a^{2}}}\ln \left|\cos \left({\frac {ax}{2}}-{\frac {\pi }{4}}\right)\right|+C}
∫ ∫ -->
x
d
x
1
− − -->
sin
-->
a
x
=
x
a
cot
-->
(
π π -->
4
− − -->
a
x
2
)
+
2
a
2
ln
-->
|
sin
-->
(
π π -->
4
− − -->
a
x
2
)
|
+
C
{\displaystyle \int {\frac {x\;dx}{1-\sin ax}}={\frac {x}{a}}\cot \left({\frac {\pi }{4}}-{\frac {ax}{2}}\right)+{\frac {2}{a^{2}}}\ln \left|\sin \left({\frac {\pi }{4}}-{\frac {ax}{2}}\right)\right|+C}
∫ ∫ -->
sin
-->
a
x
d
x
1
± ± -->
sin
-->
a
x
=
± ± -->
x
+
1
a
tan
-->
(
π π -->
4
∓ ∓ -->
a
x
2
)
+
C
{\displaystyle \int {\frac {\sin ax\;dx}{1\pm \sin ax}}=\pm x+{\frac {1}{a}}\tan \left({\frac {\pi }{4}}\mp {\frac {ax}{2}}\right)+C}
∫ ∫ -->
cos
-->
a
x
d
x
=
1
a
sin
-->
a
x
+
C
{\displaystyle \int \cos ax\;dx={\frac {1}{a}}\sin ax+C\,\!}
∫ ∫ -->
cos
n
-->
a
x
d
x
=
cos
n
− − -->
1
-->
a
x
sin
-->
a
x
n
a
+
n
− − -->
1
n
∫ ∫ -->
cos
n
− − -->
2
-->
a
x
d
x
(for
n
>
0
)
{\displaystyle \int \cos ^{n}ax\;dx={\frac {\cos ^{n-1}ax\sin ax}{na}}+{\frac {n-1}{n}}\int \cos ^{n-2}ax\;dx\qquad {\mbox{(for }}n>0{\mbox{)}}\,\!}
∫ ∫ -->
x
cos
-->
a
x
d
x
=
cos
-->
a
x
a
2
+
x
sin
-->
a
x
a
+
C
{\displaystyle \int x\cos ax\;dx={\frac {\cos ax}{a^{2}}}+{\frac {x\sin ax}{a}}+C\,\!}
∫ ∫ -->
cos
2
-->
a
x
d
x
=
x
2
+
1
4
a
sin
-->
2
a
x
+
C
=
x
2
+
1
2
a
sin
-->
a
x
cos
-->
a
x
+
C
{\displaystyle \int \cos ^{2}{ax}\;dx={\frac {x}{2}}+{\frac {1}{4a}}\sin 2ax+C={\frac {x}{2}}+{\frac {1}{2a}}\sin ax\cos ax+C\!}
∫ ∫ -->
x
2
cos
2
-->
a
x
d
x
=
x
3
6
+
(
x
2
4
a
− − -->
1
8
a
3
)
sin
-->
2
a
x
+
x
4
a
2
cos
-->
2
a
x
+
C
{\displaystyle \int x^{2}\cos ^{2}{ax}\;dx={\frac {x^{3}}{6}}+\left({\frac {x^{2}}{4a}}-{\frac {1}{8a^{3}}}\right)\sin 2ax+{\frac {x}{4a^{2}}}\cos 2ax+C\!}
∫ ∫ -->
x
n
cos
-->
a
x
d
x
=
x
n
sin
-->
a
x
a
− − -->
n
a
∫ ∫ -->
x
n
− − -->
1
sin
-->
a
x
d
x
{\displaystyle \int x^{n}\cos ax\;dx={\frac {x^{n}\sin ax}{a}}-{\frac {n}{a}}\int x^{n-1}\sin ax\;dx\,\!}
∫ ∫ -->
cos
-->
a
x
x
d
x
=
ln
-->
|
a
x
|
+
∑ ∑ -->
k
=
1
∞ ∞ -->
(
− − -->
1
)
k
(
a
x
)
2
k
2
k
⋅ ⋅ -->
(
2
k
)
!
+
C
{\displaystyle \int {\frac {\cos ax}{x}}dx=\ln |ax|+\sum _{k=1}^{\infty }(-1)^{k}{\frac {(ax)^{2k}}{2k\cdot (2k)!}}+C\,\!}
∫ ∫ -->
cos
-->
a
x
x
n
d
x
=
− − -->
cos
-->
a
x
(
n
− − -->
1
)
x
n
− − -->
1
− − -->
a
n
− − -->
1
∫ ∫ -->
sin
-->
a
x
x
n
− − -->
1
d
x
(for
n
≠ ≠ -->
1
)
{\displaystyle \int {\frac {\cos ax}{x^{n}}}dx=-{\frac {\cos ax}{(n-1)x^{n-1}}}-{\frac {a}{n-1}}\int {\frac {\sin ax}{x^{n-1}}}dx\qquad {\mbox{(for }}n\neq 1{\mbox{)}}\,\!}
∫ ∫ -->
d
x
cos
-->
a
x
=
1
a
ln
-->
|
tan
-->
(
a
x
2
+
π π -->
4
)
|
+
C
{\displaystyle \int {\frac {dx}{\cos ax}}={\frac {1}{a}}\ln \left|\tan \left({\frac {ax}{2}}+{\frac {\pi }{4}}\right)\right|+C}
∫ ∫ -->
d
x
cos
n
-->
a
x
=
sin
-->
a
x
a
(
n
− − -->
1
)
cos
n
− − -->
1
-->
a
x
+
n
− − -->
2
n
− − -->
1
∫ ∫ -->
d
x
cos
n
− − -->
2
-->
a
x
(for
n
>
1
)
{\displaystyle \int {\frac {dx}{\cos ^{n}ax}}={\frac {\sin ax}{a(n-1)\cos ^{n-1}ax}}+{\frac {n-2}{n-1}}\int {\frac {dx}{\cos ^{n-2}ax}}\qquad {\mbox{(for }}n>1{\mbox{)}}\,\!}
∫ ∫ -->
d
x
1
+
cos
-->
a
x
=
1
a
tan
-->
a
x
2
+
C
{\displaystyle \int {\frac {dx}{1+\cos ax}}={\frac {1}{a}}\tan {\frac {ax}{2}}+C\,\!}
∫ ∫ -->
d
x
1
− − -->
cos
-->
a
x
=
− − -->
1
a
cot
-->
a
x
2
+
C
{\displaystyle \int {\frac {dx}{1-\cos ax}}=-{\frac {1}{a}}\cot {\frac {ax}{2}}+C\,\!}
∫ ∫ -->
x
d
x
1
+
cos
-->
a
x
=
x
a
tan
-->
a
x
2
+
2
a
2
ln
-->
|
cos
-->
a
x
2
|
+
C
{\displaystyle \int {\frac {x\;dx}{1+\cos ax}}={\frac {x}{a}}\tan {\frac {ax}{2}}+{\frac {2}{a^{2}}}\ln \left|\cos {\frac {ax}{2}}\right|+C}
∫ ∫ -->
x
d
x
1
− − -->
cos
-->
a
x
=
− − -->
x
a
cot
-->
a
x
2
+
2
a
2
ln
-->
|
sin
-->
a
x
2
|
+
C
{\displaystyle \int {\frac {x\;dx}{1-\cos ax}}=-{\frac {x}{a}}\cot {\frac {ax}{2}}+{\frac {2}{a^{2}}}\ln \left|\sin {\frac {ax}{2}}\right|+C}
∫ ∫ -->
cos
-->
a
x
d
x
1
+
cos
-->
a
x
=
x
− − -->
1
a
tan
-->
a
x
2
+
C
{\displaystyle \int {\frac {\cos ax\;dx}{1+\cos ax}}=x-{\frac {1}{a}}\tan {\frac {ax}{2}}+C\,\!}
∫ ∫ -->
cos
-->
a
x
d
x
1
− − -->
cos
-->
a
x
=
− − -->
x
− − -->
1
a
cot
-->
a
x
2
+
C
{\displaystyle \int {\frac {\cos ax\;dx}{1-\cos ax}}=-x-{\frac {1}{a}}\cot {\frac {ax}{2}}+C\,\!}
∫ ∫ -->
cos
-->
a
1
x
cos
-->
a
2
x
d
x
=
sin
-->
(
a
1
− − -->
a
2
)
x
2
(
a
1
− − -->
a
2
)
+
sin
-->
(
a
1
+
a
2
)
x
2
(
a
1
+
a
2
)
+
C
(for
|
a
1
|
≠ ≠ -->
|
a
2
|
)
{\displaystyle \int \cos a_{1}x\cos a_{2}x\;dx={\frac {\sin(a_{1}-a_{2})x}{2(a_{1}-a_{2})}}+{\frac {\sin(a_{1}+a_{2})x}{2(a_{1}+a_{2})}}+C\qquad {\mbox{(for }}|a_{1}|\neq |a_{2}|{\mbox{)}}\,\!}
∫ ∫ -->
tan
-->
a
x
d
x
=
− − -->
1
a
ln
-->
|
cos
-->
a
x
|
+
C
=
1
a
ln
-->
|
sec
-->
a
x
|
+
C
{\displaystyle \int \tan ax\;dx=-{\frac {1}{a}}\ln |\cos ax|+C={\frac {1}{a}}\ln |\sec ax|+C\,\!}
∫ ∫ -->
tan
n
-->
a
x
d
x
=
1
a
(
n
− − -->
1
)
tan
n
− − -->
1
-->
a
x
− − -->
∫ ∫ -->
tan
n
− − -->
2
-->
a
x
d
x
(for
n
≠ ≠ -->
1
)
{\displaystyle \int \tan ^{n}ax\;dx={\frac {1}{a(n-1)}}\tan ^{n-1}ax-\int \tan ^{n-2}ax\;dx\qquad {\mbox{(for }}n\neq 1{\mbox{)}}\,\!}
∫ ∫ -->
d
x
q
tan
-->
a
x
+
p
=
1
p
2
+
q
2
(
p
x
+
q
a
ln
-->
|
q
sin
-->
a
x
+
p
cos
-->
a
x
|
)
+
C
(for
p
2
+
q
2
≠ ≠ -->
0
)
{\displaystyle \int {\frac {dx}{q\tan ax+p}}={\frac {1}{p^{2}+q^{2}}}(px+{\frac {q}{a}}\ln |q\sin ax+p\cos ax|)+C\qquad {\mbox{(for }}p^{2}+q^{2}\neq 0{\mbox{)}}\,\!}
∫ ∫ -->
d
x
tan
-->
a
x
=
1
a
ln
-->
|
sin
-->
a
x
|
+
C
{\displaystyle \int {\frac {dx}{\tan ax}}={\frac {1}{a}}\ln |\sin ax|+C\,\!}
∫ ∫ -->
d
x
tan
-->
a
x
+
1
=
x
2
+
1
2
a
ln
-->
|
sin
-->
a
x
+
cos
-->
a
x
|
+
C
{\displaystyle \int {\frac {dx}{\tan ax+1}}={\frac {x}{2}}+{\frac {1}{2a}}\ln |\sin ax+\cos ax|+C\,\!}
∫ ∫ -->
d
x
tan
-->
a
x
− − -->
1
=
− − -->
x
2
+
1
2
a
ln
-->
|
sin
-->
a
x
− − -->
cos
-->
a
x
|
+
C
{\displaystyle \int {\frac {dx}{\tan ax-1}}=-{\frac {x}{2}}+{\frac {1}{2a}}\ln |\sin ax-\cos ax|+C\,\!}
∫ ∫ -->
tan
-->
a
x
d
x
tan
-->
a
x
+
1
=
x
2
− − -->
1
2
a
ln
-->
|
sin
-->
a
x
+
cos
-->
a
x
|
+
C
{\displaystyle \int {\frac {\tan ax\;dx}{\tan ax+1}}={\frac {x}{2}}-{\frac {1}{2a}}\ln |\sin ax+\cos ax|+C\,\!}
∫ ∫ -->
tan
-->
a
x
d
x
tan
-->
a
x
− − -->
1
=
x
2
+
1
2
a
ln
-->
|
sin
-->
a
x
− − -->
cos
-->
a
x
|
+
C
{\displaystyle \int {\frac {\tan ax\;dx}{\tan ax-1}}={\frac {x}{2}}+{\frac {1}{2a}}\ln |\sin ax-\cos ax|+C\,\!}
Функція, що містять тільки секанс
∫ ∫ -->
sec
-->
a
x
d
x
=
1
a
ln
-->
|
sec
-->
a
x
+
tan
-->
a
x
|
+
C
{\displaystyle \int \sec {ax}\,dx={\frac {1}{a}}\ln {\left|\sec {ax}+\tan {ax}\right|}+C}
∫ ∫ -->
sec
n
-->
a
x
d
x
=
sec
n
− − -->
1
-->
a
x
sin
-->
a
x
a
(
n
− − -->
1
)
+
n
− − -->
2
n
− − -->
1
∫ ∫ -->
sec
n
− − -->
2
-->
a
x
d
x
(for
n
≠ ≠ -->
1
)
{\displaystyle \int \sec ^{n}{ax}\,dx={\frac {\sec ^{n-1}{ax}\sin {ax}}{a(n-1)}}\,+\,{\frac {n-2}{n-1}}\int \sec ^{n-2}{ax}\,dx\qquad {\mbox{ (for }}n\neq 1{\mbox{)}}\,\!}
∫ ∫ -->
sec
n
-->
x
d
x
=
sec
n
− − -->
2
-->
x
tan
-->
x
n
− − -->
1
+
n
− − -->
2
n
− − -->
1
∫ ∫ -->
sec
n
− − -->
2
-->
x
d
x
{\displaystyle \int \sec ^{n}{x}\,dx={\frac {\sec ^{n-2}{x}\tan {x}}{n-1}}\,+\,{\frac {n-2}{n-1}}\int \sec ^{n-2}{x}\,dx}
[ 1]
∫ ∫ -->
d
x
sec
-->
x
+
1
=
x
− − -->
tan
-->
x
2
+
C
{\displaystyle \int {\frac {dx}{\sec {x}+1}}=x-\tan {\frac {x}{2}}+C}
∫ ∫ -->
d
x
sec
-->
x
− − -->
1
=
− − -->
x
− − -->
cot
-->
x
2
+
C
{\displaystyle \int {\frac {dx}{\sec {x}-1}}=-x-\cot {\frac {x}{2}}+C}
∫ ∫ -->
csc
-->
a
x
d
x
=
1
a
ln
-->
|
csc
-->
a
x
− − -->
cot
-->
a
x
|
+
C
{\displaystyle \int \csc {ax}\,dx={\frac {1}{a}}\ln {\left|\csc {ax}-\cot {ax}\right|}+C}
∫ ∫ -->
csc
2
-->
x
d
x
=
− − -->
cot
-->
x
+
C
{\displaystyle \int \csc ^{2}{x}\,dx=-\cot {x}+C}
∫ ∫ -->
csc
n
-->
a
x
d
x
=
− − -->
csc
n
− − -->
1
-->
a
x
cos
-->
a
x
a
(
n
− − -->
1
)
+
n
− − -->
2
n
− − -->
1
∫ ∫ -->
csc
n
− − -->
2
-->
a
x
d
x
(for
n
≠ ≠ -->
1
)
{\displaystyle \int \csc ^{n}{ax}\,dx=-{\frac {\csc ^{n-1}{ax}\cos {ax}}{a(n-1)}}\,+\,{\frac {n-2}{n-1}}\int \csc ^{n-2}{ax}\,dx\qquad {\mbox{ (for }}n\neq 1{\mbox{)}}\,\!}
∫ ∫ -->
d
x
csc
-->
x
+
1
=
x
− − -->
2
sin
-->
x
2
cos
-->
x
2
+
sin
-->
x
2
+
C
{\displaystyle \int {\frac {dx}{\csc {x}+1}}=x-{\frac {2\sin {\frac {x}{2}}}{\cos {\frac {x}{2}}+\sin {\frac {x}{2}}}}+C}
∫ ∫ -->
d
x
csc
-->
x
− − -->
1
=
2
sin
-->
x
2
cos
-->
x
2
− − -->
sin
-->
x
2
− − -->
x
+
C
{\displaystyle \int {\frac {dx}{\csc {x}-1}}={\frac {2\sin {\frac {x}{2}}}{\cos {\frac {x}{2}}-\sin {\frac {x}{2}}}}-x+C}
∫ ∫ -->
cot
-->
a
x
d
x
=
1
a
ln
-->
|
sin
-->
a
x
|
+
C
{\displaystyle \int \cot ax\;dx={\frac {1}{a}}\ln |\sin ax|+C\,\!}
∫ ∫ -->
cot
n
-->
a
x
d
x
=
− − -->
1
a
(
n
− − -->
1
)
cot
n
− − -->
1
-->
a
x
− − -->
∫ ∫ -->
cot
n
− − -->
2
-->
a
x
d
x
(for
n
≠ ≠ -->
1
)
{\displaystyle \int \cot ^{n}ax\;dx=-{\frac {1}{a(n-1)}}\cot ^{n-1}ax-\int \cot ^{n-2}ax\;dx\qquad {\mbox{(for }}n\neq 1{\mbox{)}}\,\!}
∫ ∫ -->
d
x
1
+
cot
-->
a
x
=
∫ ∫ -->
tan
-->
a
x
d
x
tan
-->
a
x
+
1
{\displaystyle \int {\frac {dx}{1+\cot ax}}=\int {\frac {\tan ax\;dx}{\tan ax+1}}\,\!}
∫ ∫ -->
d
x
1
− − -->
cot
-->
a
x
=
∫ ∫ -->
tan
-->
a
x
d
x
tan
-->
a
x
− − -->
1
{\displaystyle \int {\frac {dx}{1-\cot ax}}=\int {\frac {\tan ax\;dx}{\tan ax-1}}\,\!}
∫ ∫ -->
d
x
cos
-->
a
x
± ± -->
sin
-->
a
x
=
1
a
2
ln
-->
|
tan
-->
(
a
x
2
± ± -->
π π -->
8
)
|
+
C
{\displaystyle \int {\frac {dx}{\cos ax\pm \sin ax}}={\frac {1}{a{\sqrt {2}}}}\ln \left|\tan \left({\frac {ax}{2}}\pm {\frac {\pi }{8}}\right)\right|+C}
∫ ∫ -->
d
x
(
cos
-->
a
x
± ± -->
sin
-->
a
x
)
2
=
1
2
a
tan
-->
(
a
x
∓ ∓ -->
π π -->
4
)
+
C
{\displaystyle \int {\frac {dx}{(\cos ax\pm \sin ax)^{2}}}={\frac {1}{2a}}\tan \left(ax\mp {\frac {\pi }{4}}\right)+C}
∫ ∫ -->
d
x
(
cos
-->
x
+
sin
-->
x
)
n
=
1
n
− − -->
1
(
sin
-->
x
− − -->
cos
-->
x
(
cos
-->
x
+
sin
-->
x
)
n
− − -->
1
− − -->
2
(
n
− − -->
2
)
∫ ∫ -->
d
x
(
cos
-->
x
+
sin
-->
x
)
n
− − -->
2
)
{\displaystyle \int {\frac {dx}{(\cos x+\sin x)^{n}}}={\frac {1}{n-1}}\left({\frac {\sin x-\cos x}{(\cos x+\sin x)^{n-1}}}-2(n-2)\int {\frac {dx}{(\cos x+\sin x)^{n-2}}}\right)}
∫ ∫ -->
cos
-->
a
x
d
x
cos
-->
a
x
+
sin
-->
a
x
=
x
2
+
1
2
a
ln
-->
|
sin
-->
a
x
+
cos
-->
a
x
|
+
C
{\displaystyle \int {\frac {\cos ax\;dx}{\cos ax+\sin ax}}={\frac {x}{2}}+{\frac {1}{2a}}\ln \left|\sin ax+\cos ax\right|+C}
∫ ∫ -->
cos
-->
a
x
d
x
cos
-->
a
x
− − -->
sin
-->
a
x
=
x
2
− − -->
1
2
a
ln
-->
|
sin
-->
a
x
− − -->
cos
-->
a
x
|
+
C
{\displaystyle \int {\frac {\cos ax\;dx}{\cos ax-\sin ax}}={\frac {x}{2}}-{\frac {1}{2a}}\ln \left|\sin ax-\cos ax\right|+C}
∫ ∫ -->
sin
-->
a
x
d
x
cos
-->
a
x
+
sin
-->
a
x
=
x
2
− − -->
1
2
a
ln
-->
|
sin
-->
a
x
+
cos
-->
a
x
|
+
C
{\displaystyle \int {\frac {\sin ax\;dx}{\cos ax+\sin ax}}={\frac {x}{2}}-{\frac {1}{2a}}\ln \left|\sin ax+\cos ax\right|+C}
∫ ∫ -->
sin
-->
a
x
d
x
cos
-->
a
x
− − -->
sin
-->
a
x
=
− − -->
x
2
− − -->
1
2
a
ln
-->
|
sin
-->
a
x
− − -->
cos
-->
a
x
|
+
C
{\displaystyle \int {\frac {\sin ax\;dx}{\cos ax-\sin ax}}=-{\frac {x}{2}}-{\frac {1}{2a}}\ln \left|\sin ax-\cos ax\right|+C}
∫ ∫ -->
cos
-->
a
x
d
x
sin
-->
a
x
(
1
+
cos
-->
a
x
)
=
− − -->
1
4
a
tan
2
-->
a
x
2
+
1
2
a
ln
-->
|
tan
-->
a
x
2
|
+
C
{\displaystyle \int {\frac {\cos ax\;dx}{\sin ax(1+\cos ax)}}=-{\frac {1}{4a}}\tan ^{2}{\frac {ax}{2}}+{\frac {1}{2a}}\ln \left|\tan {\frac {ax}{2}}\right|+C}
∫ ∫ -->
cos
-->
a
x
d
x
sin
-->
a
x
(
1
+
− − -->
cos
-->
a
x
)
=
− − -->
1
4
a
cot
2
-->
a
x
2
− − -->
1
2
a
ln
-->
|
tan
-->
a
x
2
|
+
C
{\displaystyle \int {\frac {\cos ax\;dx}{\sin ax(1+-\cos ax)}}=-{\frac {1}{4a}}\cot ^{2}{\frac {ax}{2}}-{\frac {1}{2a}}\ln \left|\tan {\frac {ax}{2}}\right|+C}
∫ ∫ -->
sin
-->
a
x
d
x
cos
-->
a
x
(
1
+
sin
-->
a
x
)
=
1
4
a
cot
2
-->
(
a
x
2
+
π π -->
4
)
+
1
2
a
ln
-->
|
tan
-->
(
a
x
2
+
π π -->
4
)
|
+
C
{\displaystyle \int {\frac {\sin ax\;dx}{\cos ax(1+\sin ax)}}={\frac {1}{4a}}\cot ^{2}\left({\frac {ax}{2}}+{\frac {\pi }{4}}\right)+{\frac {1}{2a}}\ln \left|\tan \left({\frac {ax}{2}}+{\frac {\pi }{4}}\right)\right|+C}
∫ ∫ -->
sin
-->
a
x
d
x
cos
-->
a
x
(
1
− − -->
sin
-->
a
x
)
=
1
4
a
tan
2
-->
(
a
x
2
+
π π -->
4
)
− − -->
1
2
a
ln
-->
|
tan
-->
(
a
x
2
+
π π -->
4
)
|
+
C
{\displaystyle \int {\frac {\sin ax\;dx}{\cos ax(1-\sin ax)}}={\frac {1}{4a}}\tan ^{2}\left({\frac {ax}{2}}+{\frac {\pi }{4}}\right)-{\frac {1}{2a}}\ln \left|\tan \left({\frac {ax}{2}}+{\frac {\pi }{4}}\right)\right|+C}
∫ ∫ -->
sin
-->
a
x
cos
-->
a
x
d
x
=
1
2
a
sin
2
-->
a
x
+
C
{\displaystyle \int \sin ax\cos ax\;dx={\frac {1}{2a}}\sin ^{2}ax+C\,\!}
∫ ∫ -->
sin
-->
a
1
x
cos
-->
a
2
x
d
x
=
− − -->
cos
-->
(
a
1
− − -->
a
2
)
x
2
(
a
1
− − -->
a
2
)
− − -->
cos
-->
(
a
1
+
a
2
)
x
2
(
a
1
+
a
2
)
+
C
(for
|
a
1
|
≠ ≠ -->
|
a
2
|
)
{\displaystyle \int \sin a_{1}x\cos a_{2}x\;dx=-{\frac {\cos(a_{1}-a_{2})x}{2(a_{1}-a_{2})}}-{\frac {\cos(a_{1}+a_{2})x}{2(a_{1}+a_{2})}}+C\qquad {\mbox{(for }}|a_{1}|\neq |a_{2}|{\mbox{)}}\,\!}
∫ ∫ -->
sin
n
-->
a
x
cos
-->
a
x
d
x
=
1
a
(
n
+
1
)
sin
n
+
1
-->
a
x
+
C
(for
n
≠ ≠ -->
− − -->
1
)
{\displaystyle \int \sin ^{n}ax\cos ax\;dx={\frac {1}{a(n+1)}}\sin ^{n+1}ax+C\qquad {\mbox{(for }}n\neq -1{\mbox{)}}\,\!}
∫ ∫ -->
sin
-->
a
x
cos
n
-->
a
x
d
x
=
− − -->
1
a
(
n
+
1
)
cos
n
+
1
-->
a
x
+
C
(for
n
≠ ≠ -->
− − -->
1
)
{\displaystyle \int \sin ax\cos ^{n}ax\;dx=-{\frac {1}{a(n+1)}}\cos ^{n+1}ax+C\qquad {\mbox{(for }}n\neq -1{\mbox{)}}\,\!}
∫ ∫ -->
sin
n
-->
a
x
cos
m
-->
a
x
d
x
=
− − -->
sin
n
− − -->
1
-->
a
x
cos
m
+
1
-->
a
x
a
(
n
+
m
)
+
n
− − -->
1
n
+
m
∫ ∫ -->
sin
n
− − -->
2
-->
a
x
cos
m
-->
a
x
d
x
(for
m
,
n
>
0
)
{\displaystyle \int \sin ^{n}ax\cos ^{m}ax\;dx=-{\frac {\sin ^{n-1}ax\cos ^{m+1}ax}{a(n+m)}}+{\frac {n-1}{n+m}}\int \sin ^{n-2}ax\cos ^{m}ax\;dx\qquad {\mbox{(for }}m,n>0{\mbox{)}}\,\!}
також:
∫ ∫ -->
sin
n
-->
a
x
cos
m
-->
a
x
d
x
=
sin
n
+
1
-->
a
x
cos
m
− − -->
1
-->
a
x
a
(
n
+
m
)
+
m
− − -->
1
n
+
m
∫ ∫ -->
sin
n
-->
a
x
cos
m
− − -->
2
-->
a
x
d
x
(for
m
,
n
>
0
)
{\displaystyle \int \sin ^{n}ax\cos ^{m}ax\;dx={\frac {\sin ^{n+1}ax\cos ^{m-1}ax}{a(n+m)}}+{\frac {m-1}{n+m}}\int \sin ^{n}ax\cos ^{m-2}ax\;dx\qquad {\mbox{(for }}m,n>0{\mbox{)}}\,\!}
∫ ∫ -->
d
x
sin
-->
a
x
cos
-->
a
x
=
1
a
ln
-->
|
tan
-->
a
x
|
+
C
{\displaystyle \int {\frac {dx}{\sin ax\cos ax}}={\frac {1}{a}}\ln \left|\tan ax\right|+C}
∫ ∫ -->
d
x
sin
-->
a
x
cos
n
-->
a
x
=
1
a
(
n
− − -->
1
)
cos
n
− − -->
1
-->
a
x
+
∫ ∫ -->
d
x
sin
-->
a
x
cos
n
− − -->
2
-->
a
x
(for
n
≠ ≠ -->
1
)
{\displaystyle \int {\frac {dx}{\sin ax\cos ^{n}ax}}={\frac {1}{a(n-1)\cos ^{n-1}ax}}+\int {\frac {dx}{\sin ax\cos ^{n-2}ax}}\qquad {\mbox{(for }}n\neq 1{\mbox{)}}\,\!}
∫ ∫ -->
d
x
sin
n
-->
a
x
cos
-->
a
x
=
− − -->
1
a
(
n
− − -->
1
)
sin
n
− − -->
1
-->
a
x
+
∫ ∫ -->
d
x
sin
n
− − -->
2
-->
a
x
cos
-->
a
x
(for
n
≠ ≠ -->
1
)
{\displaystyle \int {\frac {dx}{\sin ^{n}ax\cos ax}}=-{\frac {1}{a(n-1)\sin ^{n-1}ax}}+\int {\frac {dx}{\sin ^{n-2}ax\cos ax}}\qquad {\mbox{(for }}n\neq 1{\mbox{)}}\,\!}
∫ ∫ -->
sin
-->
a
x
d
x
cos
n
-->
a
x
=
1
a
(
n
− − -->
1
)
cos
n
− − -->
1
-->
a
x
+
C
(for
n
≠ ≠ -->
1
)
{\displaystyle \int {\frac {\sin ax\;dx}{\cos ^{n}ax}}={\frac {1}{a(n-1)\cos ^{n-1}ax}}+C\qquad {\mbox{(for }}n\neq 1{\mbox{)}}\,\!}
∫ ∫ -->
sin
2
-->
a
x
d
x
cos
-->
a
x
=
− − -->
1
a
sin
-->
a
x
+
1
a
ln
-->
|
tan
-->
(
π π -->
4
+
a
x
2
)
|
+
C
{\displaystyle \int {\frac {\sin ^{2}ax\;dx}{\cos ax}}=-{\frac {1}{a}}\sin ax+{\frac {1}{a}}\ln \left|\tan \left({\frac {\pi }{4}}+{\frac {ax}{2}}\right)\right|+C}
∫ ∫ -->
sin
2
-->
a
x
d
x
cos
n
-->
a
x
=
sin
-->
a
x
a
(
n
− − -->
1
)
cos
n
− − -->
1
-->
a
x
− − -->
1
n
− − -->
1
∫ ∫ -->
d
x
cos
n
− − -->
2
-->
a
x
(for
n
≠ ≠ -->
1
)
{\displaystyle \int {\frac {\sin ^{2}ax\;dx}{\cos ^{n}ax}}={\frac {\sin ax}{a(n-1)\cos ^{n-1}ax}}-{\frac {1}{n-1}}\int {\frac {dx}{\cos ^{n-2}ax}}\qquad {\mbox{(for }}n\neq 1{\mbox{)}}\,\!}
∫ ∫ -->
sin
n
-->
a
x
d
x
cos
-->
a
x
=
− − -->
sin
n
− − -->
1
-->
a
x
a
(
n
− − -->
1
)
+
∫ ∫ -->
sin
n
− − -->
2
-->
a
x
d
x
cos
-->
a
x
(for
n
≠ ≠ -->
1
)
{\displaystyle \int {\frac {\sin ^{n}ax\;dx}{\cos ax}}=-{\frac {\sin ^{n-1}ax}{a(n-1)}}+\int {\frac {\sin ^{n-2}ax\;dx}{\cos ax}}\qquad {\mbox{(for }}n\neq 1{\mbox{)}}\,\!}
∫ ∫ -->
sin
n
-->
a
x
d
x
cos
m
-->
a
x
=
sin
n
+
1
-->
a
x
a
(
m
− − -->
1
)
cos
m
− − -->
1
-->
a
x
− − -->
n
− − -->
m
+
2
m
− − -->
1
∫ ∫ -->
sin
n
-->
a
x
d
x
cos
m
− − -->
2
-->
a
x
(for
m
≠ ≠ -->
1
)
{\displaystyle \int {\frac {\sin ^{n}ax\;dx}{\cos ^{m}ax}}={\frac {\sin ^{n+1}ax}{a(m-1)\cos ^{m-1}ax}}-{\frac {n-m+2}{m-1}}\int {\frac {\sin ^{n}ax\;dx}{\cos ^{m-2}ax}}\qquad {\mbox{(for }}m\neq 1{\mbox{)}}\,\!}
також:
∫ ∫ -->
sin
n
-->
a
x
d
x
cos
m
-->
a
x
=
− − -->
sin
n
− − -->
1
-->
a
x
a
(
n
− − -->
m
)
cos
m
− − -->
1
-->
a
x
+
n
− − -->
1
n
− − -->
m
∫ ∫ -->
sin
n
− − -->
2
-->
a
x
d
x
cos
m
-->
a
x
(for
m
≠ ≠ -->
n
)
{\displaystyle \int {\frac {\sin ^{n}ax\;dx}{\cos ^{m}ax}}=-{\frac {\sin ^{n-1}ax}{a(n-m)\cos ^{m-1}ax}}+{\frac {n-1}{n-m}}\int {\frac {\sin ^{n-2}ax\;dx}{\cos ^{m}ax}}\qquad {\mbox{(for }}m\neq n{\mbox{)}}\,\!}
також:
∫ ∫ -->
sin
n
-->
a
x
d
x
cos
m
-->
a
x
=
sin
n
− − -->
1
-->
a
x
a
(
m
− − -->
1
)
cos
m
− − -->
1
-->
a
x
− − -->
n
− − -->
1
m
− − -->
1
∫ ∫ -->
sin
n
− − -->
2
-->
a
x
d
x
cos
m
− − -->
2
-->
a
x
(for
m
≠ ≠ -->
1
)
{\displaystyle \int {\frac {\sin ^{n}ax\;dx}{\cos ^{m}ax}}={\frac {\sin ^{n-1}ax}{a(m-1)\cos ^{m-1}ax}}-{\frac {n-1}{m-1}}\int {\frac {\sin ^{n-2}ax\;dx}{\cos ^{m-2}ax}}\qquad {\mbox{(for }}m\neq 1{\mbox{)}}\,\!}
∫ ∫ -->
cos
-->
a
x
d
x
sin
n
-->
a
x
=
− − -->
1
a
(
n
− − -->
1
)
sin
n
− − -->
1
-->
a
x
+
C
(for
n
≠ ≠ -->
1
)
{\displaystyle \int {\frac {\cos ax\;dx}{\sin ^{n}ax}}=-{\frac {1}{a(n-1)\sin ^{n-1}ax}}+C\qquad {\mbox{(for }}n\neq 1{\mbox{)}}\,\!}
∫ ∫ -->
cos
2
-->
a
x
d
x
sin
-->
a
x
=
1
a
(
cos
-->
a
x
+
ln
-->
|
tan
-->
a
x
2
|
)
+
C
{\displaystyle \int {\frac {\cos ^{2}ax\;dx}{\sin ax}}={\frac {1}{a}}\left(\cos ax+\ln \left|\tan {\frac {ax}{2}}\right|\right)+C}
∫ ∫ -->
cos
2
-->
a
x
d
x
sin
n
-->
a
x
=
− − -->
1
n
− − -->
1
(
cos
-->
a
x
a
sin
n
− − -->
1
-->
a
x
)
+
∫ ∫ -->
d
x
sin
n
− − -->
2
-->
a
x
)
(for
n
≠ ≠ -->
1
)
{\displaystyle \int {\frac {\cos ^{2}ax\;dx}{\sin ^{n}ax}}=-{\frac {1}{n-1}}\left({\frac {\cos ax}{a\sin ^{n-1}ax)}}+\int {\frac {dx}{\sin ^{n-2}ax}}\right)\qquad {\mbox{(for }}n\neq 1{\mbox{)}}}
∫ ∫ -->
cos
n
-->
a
x
d
x
sin
m
-->
a
x
=
− − -->
cos
n
+
1
-->
a
x
a
(
m
− − -->
1
)
sin
m
− − -->
1
-->
a
x
− − -->
n
− − -->
m
− − -->
2
m
− − -->
1
∫ ∫ -->
cos
n
-->
a
x
d
x
sin
m
− − -->
2
-->
a
x
(for
m
≠ ≠ -->
1
)
{\displaystyle \int {\frac {\cos ^{n}ax\;dx}{\sin ^{m}ax}}=-{\frac {\cos ^{n+1}ax}{a(m-1)\sin ^{m-1}ax}}-{\frac {n-m-2}{m-1}}\int {\frac {\cos ^{n}ax\;dx}{\sin ^{m-2}ax}}\qquad {\mbox{(for }}m\neq 1{\mbox{)}}\,\!}
також:
∫ ∫ -->
cos
n
-->
a
x
d
x
sin
m
-->
a
x
=
cos
n
− − -->
1
-->
a
x
a
(
n
− − -->
m
)
sin
m
− − -->
1
-->
a
x
+
n
− − -->
1
n
− − -->
m
∫ ∫ -->
cos
n
− − -->
2
-->
a
x
d
x
sin
m
-->
a
x
(for
m
≠ ≠ -->
n
)
{\displaystyle \int {\frac {\cos ^{n}ax\;dx}{\sin ^{m}ax}}={\frac {\cos ^{n-1}ax}{a(n-m)\sin ^{m-1}ax}}+{\frac {n-1}{n-m}}\int {\frac {\cos ^{n-2}ax\;dx}{\sin ^{m}ax}}\qquad {\mbox{(for }}m\neq n{\mbox{)}}\,\!}
також:
∫ ∫ -->
cos
n
-->
a
x
d
x
sin
m
-->
a
x
=
− − -->
cos
n
− − -->
1
-->
a
x
a
(
m
− − -->
1
)
sin
m
− − -->
1
-->
a
x
− − -->
n
− − -->
1
m
− − -->
1
∫ ∫ -->
cos
n
− − -->
2
-->
a
x
d
x
sin
m
− − -->
2
-->
a
x
(for
m
≠ ≠ -->
1
)
{\displaystyle \int {\frac {\cos ^{n}ax\;dx}{\sin ^{m}ax}}=-{\frac {\cos ^{n-1}ax}{a(m-1)\sin ^{m-1}ax}}-{\frac {n-1}{m-1}}\int {\frac {\cos ^{n-2}ax\;dx}{\sin ^{m-2}ax}}\qquad {\mbox{(for }}m\neq 1{\mbox{)}}\,\!}
∫ ∫ -->
sin
-->
a
x
tan
-->
a
x
d
x
=
1
a
(
ln
-->
|
sec
-->
a
x
+
tan
-->
a
x
|
− − -->
sin
-->
a
x
)
+
C
{\displaystyle \int \sin ax\tan ax\;dx={\frac {1}{a}}(\ln |\sec ax+\tan ax|-\sin ax)+C\,\!}
∫ ∫ -->
tan
n
-->
a
x
d
x
sin
2
-->
a
x
=
1
a
(
n
− − -->
1
)
tan
n
− − -->
1
-->
(
a
x
)
+
C
(for
n
≠ ≠ -->
1
)
{\displaystyle \int {\frac {\tan ^{n}ax\;dx}{\sin ^{2}ax}}={\frac {1}{a(n-1)}}\tan ^{n-1}(ax)+C\qquad {\mbox{(for }}n\neq 1{\mbox{)}}\,\!}
∫ ∫ -->
tan
n
-->
a
x
d
x
cos
2
-->
a
x
=
1
a
(
n
+
1
)
tan
n
+
1
-->
a
x
+
C
(for
n
≠ ≠ -->
− − -->
1
)
{\displaystyle \int {\frac {\tan ^{n}ax\;dx}{\cos ^{2}ax}}={\frac {1}{a(n+1)}}\tan ^{n+1}ax+C\qquad {\mbox{(for }}n\neq -1{\mbox{)}}\,\!}
∫ ∫ -->
cot
n
-->
a
x
d
x
sin
2
-->
a
x
=
1
a
(
n
+
1
)
cot
n
+
1
-->
a
x
+
C
(for
n
≠ ≠ -->
− − -->
1
)
{\displaystyle \int {\frac {\cot ^{n}ax\;dx}{\sin ^{2}ax}}={\frac {1}{a(n+1)}}\cot ^{n+1}ax+C\qquad {\mbox{(for }}n\neq -1{\mbox{)}}\,\!}
∫ ∫ -->
cot
n
-->
a
x
d
x
cos
2
-->
a
x
=
1
a
(
1
− − -->
n
)
tan
1
− − -->
n
-->
a
x
+
C
(for
n
≠ ≠ -->
1
)
{\displaystyle \int {\frac {\cot ^{n}ax\;dx}{\cos ^{2}ax}}={\frac {1}{a(1-n)}}\tan ^{1-n}ax+C\qquad {\mbox{(for }}n\neq 1{\mbox{)}}\,\!}
Інтеграли з симетричними межами інтегрування
∫ ∫ -->
− − -->
c
c
sin
-->
x
d
x
=
0
{\displaystyle \int _{-c}^{c}\sin {x}\;dx=0\!}
∫ ∫ -->
− − -->
c
c
cos
-->
x
d
x
=
2
∫ ∫ -->
0
c
cos
-->
x
d
x
=
2
∫ ∫ -->
− − -->
c
0
cos
-->
x
d
x
=
2
sin
-->
c
{\displaystyle \int _{-c}^{c}\cos {x}\;dx=2\int _{0}^{c}\cos {x}\;dx=2\int _{-c}^{0}\cos {x}\;dx=2\sin {c}\!}
∫ ∫ -->
− − -->
c
c
tan
-->
x
d
x
=
0
{\displaystyle \int _{-c}^{c}\tan {x}\;dx=0\!}
∫ ∫ -->
− − -->
a
2
a
2
x
2
cos
2
-->
n
π π -->
x
a
d
x
=
a
3
(
n
2
π π -->
2
− − -->
6
)
24
n
2
π π -->
2
(for
n
=
1
,
3
,
5...
)
{\displaystyle \int _{\frac {-a}{2}}^{\frac {a}{2}}x^{2}\cos ^{2}{\frac {n\pi x}{a}}\;dx={\frac {a^{3}(n^{2}\pi ^{2}-6)}{24n^{2}\pi ^{2}}}\qquad {\mbox{(for }}n=1,3,5...{\mbox{)}}\,\!}
Виноски
↑ Stewart, James. Calculus: Early Transcendentals, 6th Edition. Thomson: 2008
Див. також
Джерела
Двайт Г. Б. Тригонометрические функции — интегралы // Таблицы интегралов и другие математические формулы / пер. с англ. Н. В. Леви ; под ред. К. А. Семендяева . — М . : Наука , 1978. — С. 83-102. (рос.)
Посилання