Припустімо, зі стандартної (8x8) шахівниці видалили дві клітинки в діагонально протилежних кутах, і залишилось 62 клітинки. Чи можливо розмістити 31 доміно розміром 2x1 так, щоб покрити всі ці клітинки?
Більшість розмірковувань над цією проблемою надають рішення «в концептуальному сенсі» без доказів.[1]Джон МакКарті запропонував її[2] як складну проблему для автоматичних доказових систем.[3] Насправді рішення цієї проблеми з використанням резолютивної системи виходу надзвичайно важке.[4]
Рішення
Головоломку неможливо закінчити. Доміно, покладене на шахівницю, завжди покриє одну білу і одну чорну клітинку. Отже, набір доміно, розташований на шахівниці, покриє однакову кількість клітинок кожного кольору. Якщо з шахівниці забрати дві білі клітинки, то залишиться 30 білих клітинок та 32 чорних клітинки, тому закрити всі клітинки, що залишились, неможливо. Якщо з шахівниці забрати дві білі клітинки, то залишиться 30 чорних клітинок та 32 білих клітинки, і ситуація та сама.[5]
Теорема Гоморі
Доказ тої самої неможливості показує, що не існує ніякого складання доміно, коли будь-які дві білі (або чорні) клітинки видалені з шахівниці. Однак, якщо видалені дві клітинки різних кольорів, то завжди можливо заповнити доміно клітинки, що залишились на шахівниці; цей наслідок називається теорема Гоморі,[6] на честь математика Ральфа Гоморі, чий доказ був опублікований в 1973 році.[7] Теорема Гоморі була доведена з використанням гамільтонового циклуграфу-решітки, сформованого клітинками шахівниці; видалення двох клітинок різних кольорів розриває цей цикл на два шляхи з рівною кількістю клітинок кожен та які дуже легко поділити на доміно.
↑Bancerek, Grzegorz (1995), The Mutilated Chessboard Problem—checked by Mizar, у Boyer, Robert; Trybulec, Andrzej (ред.), QED Workshop, II, Warsaw University, с. 25—26, Проблема, запропонована Джон МакКарті в лекції "Heavy duty set theory"1, була вирішена тут.
↑Arthan, R. D. (2005), The Mutilated Chessboard Theorem in Z(PDF), процитовано 6 травня 2007, Теорему обрізаної шахівниці запропонував більш як 40 років тому Джон МакКарті як “міцний горішок” для автоматичного міркування.
↑Alekhnovich, Michael (2004), Mutilated chessboard problem is exponentially hard for resolution, Theoretical Computer Science, 310 (1-3): 513—525, doi:10.1016/S0304-3975(03)00395-5.
↑Відповідно до Мендельсона, оригінальна публікація була у книзі Хонсбергера. Mendelsohn, N. S. (2004), Tiling with dominoes, The College Mathematics Journal, Mathematical Association of America, 35 (2): 115—120, doi:10.2307/4146865, JSTOR4146865; Honsberger, R. (1973), Mathematical Gems I, Mathematical Association of America.