В математиці, поняття знак відноситься до властивості кожного відмінного від нуля дійсного числа бути додатнім або від'ємним. Сам нуль не має знаку, хоча в деяких контекстах має сенс розглядати поняття знакового нуля. Крім застосування для дійсних чисел, «зміна знаку» використовується в математиці і фізиці для позначення протилежного числа (множенням на -1), навіть для величин, які не є дійсними числами (тобто таких, які не відносяться ні до додатних, ні до від'ємних і не є нулем). Крім того, термін «знак» може застосовуватись до таких властивостей математичних об'єктів, які є схожими на поняття позитивність і негативність, такі як знак перестановки.
Нуль не є ані від'ємним, ані додатнім (у більшості країн), тому для позначення знаку якогось невідомого числа можуть використовувати наступні терміни:
Число додатнє якщо воно більше за 0.
Число від'ємне якщо воно менше за 0.
Число невід'ємне якщо воно більше або рівне за 0.
Число недодатнє якщо воно менше або рівне за 0.
Знак кута
В багатьох контекстах, загальноприйнятим є асоціювати знак із мірою кута, особливо коли річ іде про кут обертання. В таких випадках знак означає чи цей кут є за годинниковою чи проти годинникової стрілки. Хоча існують різні системи позначення, загальноприйнятим в математиці є вважати кути проти годинникової стрілки додатніми, а за годинниковою стрілкою - від'ємними.
Також можна асоціювати знак із кутом обертання в тривимірному просторі, якщо припустити, що вісь обертання має напрям орієнтації. Зокрема, за напрям обертання довкола орієнтованої осі зазвичай вважають додатнім, якщо воно відповідає правилу правої руки, а протилежний напрям вважають від'ємним.
Знак напрямку
В аналітичній геометрії і фізиці, прийнято помічати конкретні напрямки як позитивні і негативні. Самий простий приклад, це числова вісь, яка зазвичай зображується так, що позитивні значення знаходяться справа, а негативні зліва:
В результаті, коли мова йде про прямолінійний рух, переміщення або швидкість руху в праву сторону, то вважають такий рух позитивним, а в протилежну (ліву) сторону негативним.
На Декартовій площині, напрями вправо і вверх зазвичай вважають додатними, при тому додатні значення осі x позначають направленими в право, а вверх направленим показують додатній напрям осі y. Якщо треба представити вектор переміщення або швидкості у вигляді окремих компонент вектора, тоді горизонтальна складова буде додатною при русі вправо і від'ємною при русі вліво, а вертикальна складова буде додатна при русі вверх і від'ємна при русі вниз.