Іншими словами експоненціал об'єктів і категорії є об'єктом, разом з морфізмом , що називається відображенням оцінки такими, що для будь-якого об'єкта і морфізма існує єдиний морфізм , для якого діаграма нижче є комутативною:
Якщо експоненціал існує для всіх у , то функтор, що відправляє у є правим спряженим до . У цьому випадку існує натуральна бієкція:
.
Приклади
У категорії множин експоненціал це множина всіх функцій з у . Для будь-якого відображення відображення задається як:
.
У категорії топологічних просторів експоненціал існує, якщо — локально компактнийгаусдорфів простір. В цьому випадку - множина неперервних функцій з у з компактно-відкритою топологією. Якщо не є локально компактним гаусдорфовим простором, то експоненціал може не існувати (простір буде існувати, але відображення може не бути неперервним). З цієї причини категорія топологічних просторів не є декартово замкнутою.