Read other articles:
2003 Indian filmNeeku Nenu Naaku NuvvuPosterDirected byRaja SekharWritten byParuchuri BrothersProduced byD. Suresh BabuStarringUday KiranShriya SaranKrishnam RajuSumanCinematographyN.K. EkambaramEdited byMarthand K. VenkateshMusic byR. P. PatnaikProductioncompanySuresh ProductionsRelease date 15 August 2003 (2003-08-15) CountryIndiaLanguageTelugu Neeku Nenu Naaku Nuvvu (transl. Me for you and you for me) is a 2003 Indian Telugu-language romantic comedy film starring Uday...
American multinational financial services corporation Mastercard Inc.Logo used since 2019Company typePublicTraded asNYSE: MA (Class A)S&P 100 componentS&P 500 componentISINUS57636Q1040 IndustryFinancial servicesFounded1966; 58 years ago (1966)Headquarters2000 Purchase Street, Purchase, New York, U.S.Area servedWorldwideKey peopleMerit Janow (Chair)Michael Miebach (CEO)Sachin Mehra (CFO)Brands Cirrus Maestro Mondex MasterPass ServicesCredit cardsDebit cardsP...
Untuk ganja sebagai nama tumbuhan lihat: Ganja Ganja Kotapraja: Ganja Luas: 1000 km² Ketinggian: 408 m Populasi: 308,461 census 2007 [1] Diarsipkan 2008-06-17 di Wayback Machine. Kode pos: AZ2000-2024 Kode telepon: 016 Kotapraja: GA Garis lintang: 40° 40' 58 N Garis bujur: 46° 21' 38 E Wali kota: Eldar Azizov Ganja IPA: [ɟæn'ʤæ] (bahasa Azerbaijan: Gəncə, bahasa Persia: گنجه / Ganjeh) adalah kota terbesar kedua di Azerbaijan. Orang terkenal Nizami Ganjavi Mahsati Ganjav...
Danish tennis player This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (February 2016) (Learn how and when to remove this template message) Kristian PlessCountry (sports) DenmarkResidenceDubai, United Arab EmiratesBorn (1981-02-09) 9 February 1981 (age 43)Odense, DenmarkHeight1.87 m (6 ft 2 in)Turned pro1999Retired2009PlaysRigh...
Napoleonic-era French penal code The 1810 Penal Code The Penal Code of 1810 (French: Code pénal de 1810) was a code of criminal law created under Napoleon which replaced the Penal Code of 1791.[1] Among other things, this code reinstated a life imprisonment punishment, as well as branding. These had been abolished in the French Penal Code of 1791. Issued on June 3, 1810, it stayed in use until March 1, 1994 when it was replaced by the Code pénal. This code served as a basis for crim...
Private label brand of the Loblaw Companies This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article contains content that is written like an advertisement. Please help improve it by removing promotional content and inappropriate external links, and by adding encyclopedic content written from a neutral point of view. (March 2014) (Learn how and when to remove this template message) Th...
38th season of top-tier Italian football Football league seasonSerie A1938–39 Bologna's squadSeason1938–39ChampionsBologna5th titleRelegatedLivornoLuccheseMatches played240Goals scored593 (2.47 per match)Top goalscorerAldo BoffiEttore Puricelli(19 goals each)← 1937–38 1939–40 → The 1938–39 Serie A season was won by Bologna. Serie A 1938-39 teams distribution Teams Novara and Modena had been promoted from Serie B. Events The goal average substituted the tie-breaker in event ...
Rapid transit system in Suzhou, China Suzhou Metro Chinese nameTraditional Chinese蘇州軌道交通Simplified Chinese苏州轨道交通TranscriptionsStandard MandarinHanyu PinyinSūzhōu Guǐdào Jiāotōng OverviewLocaleSuzhou, Jiangsu, ChinaTransit typeRapid transitNumber of lines6 (in operation)Number of stations196Daily ridership1,911,000 (1 January 2021 record)Annual ridership410 million (2021)[1]Websitehttp://www.sz-mtr.com/ (Chinese)OperationBegan operationApril 28, ...
2016年美國總統選舉 ← 2012 2016年11月8日 2020 → 538個選舉人團席位獲勝需270票民意調查投票率55.7%[1][2] ▲ 0.8 % 获提名人 唐納·川普 希拉莉·克林頓 政党 共和黨 民主党 家鄉州 紐約州 紐約州 竞选搭档 迈克·彭斯 蒂姆·凱恩 选举人票 304[3][4][註 1] 227[5] 胜出州/省 30 + 緬-2 20 + DC 民選得票 62,984,828[6] 65,853,514[6]...
2020年夏季奥林匹克运动会波兰代表團波兰国旗IOC編碼POLNOC波蘭奧林匹克委員會網站olimpijski.pl(英文)(波兰文)2020年夏季奥林匹克运动会(東京)2021年7月23日至8月8日(受2019冠状病毒病疫情影响推迟,但仍保留原定名称)運動員206參賽項目24个大项旗手开幕式:帕维尔·科热尼奥夫斯基(游泳)和马娅·沃什乔夫斯卡(自行车)[1]闭幕式:卡罗利娜·纳亚(皮划艇)...
Частина серії проФілософіяLeft to right: Plato, Kant, Nietzsche, Buddha, Confucius, AverroesПлатонКантНіцшеБуддаКонфуційАверроес Філософи Епістемологи Естетики Етики Логіки Метафізики Соціально-політичні філософи Традиції Аналітична Арістотелівська Африканська Близькосхідна іранська Буддій�...
Dutch painter Self-portrait, as a firewood gatherer walking along a frozen canal Cornelis Springer (1817–1891) was a Dutch 19th-century cityscape painter.[1][2] Biography Born in Amsterdam, he was a pupil of his father, the carpenter Willem Springer (1778–1857). He was a pupil of the painters Hendrik Gerrit ten Cate, Kasparus Karsen, and Jacobus van der Stok.[3] He became a member of the Amsterdam painters collective Felix Meritis and won a gold medal for a paintin...
Iglesia de la Inmaculada Concepción Bien de Interés Cultural (BOE en el año 1981) LocalizaciónPaís España EspañaComunidad Andalucía AndalucíaProvincia Jaén JaénLocalidad HuelmaDirección Plaza de la Iglesia 23560Coordenadas 37°39′02″N 3°27′40″O / 37.65056004, -3.460987954Información religiosaCulto Iglesia católicaDiócesis JaénUso Iglesia parroquialEstatus ParroquiaAdvocación Inmaculada ConcepciónHistoria del edificioPrimera piedra 1559...
UFC mixed martial arts event in 2015 UFC 185: Pettis vs. dos AnjosThe poster for UFC 185: Pettis vs. dos AnjosInformationPromotionUltimate Fighting ChampionshipDateMarch 14, 2015 (2015-03-14)VenueAmerican Airlines CenterCityDallas, TexasAttendance14,298[1]Total gate$2,155,630[1]Buyrate310,000[2]Event chronology UFC 184: Rousey vs. Zingano UFC 185: Pettis vs. dos Anjos UFC Fight Night: Maia vs. LaFlare UFC 185: Pettis vs. dos Anjos was a mixed martial art...
Cet article est une ébauche concernant un bateau ou un navire et les forces armées des États-Unis. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Pour les autres navires du même nom, voir USS Missouri. USS Missouri (BB-63) Le Missouri après sa modernisation Type Cuirassé Classe Iowa Histoire A servi dans United States Navy Chantier naval New York Navy Yard, New York Commandé 12 juin 1940 Quille pos...
Locations mentioned in Homer's Odyssey Map of Homeric Greece based on the Catalogue of Ships in the Iliad (right-click on map to enlarge). The locations mentioned in the narratives of Odysseus's adventures have long been debated. Events in the main sequence of the Odyssey take place in the Peloponnese and in what are now called the Ionian Islands (Ithaca and its neighbours). There are also incidental mentions of Troy and its house, Phoenicia, Egypt, and Crete, which hint at a geographical kno...
Village in MoldovaPetrușeniVillagePetrușeniCoordinates: 47°51′00″N 27°19′00″E / 47.85°N 27.3166666667°E / 47.85; 27.3166666667Country MoldovaDistrictRîșcani DistrictGovernment • MayorTatiana Cojocaru (PLDM[1])Population (2014 census)[2] • Total956Time zoneUTC+2 (EET) • Summer (DST)UTC+3 (EEST) Petrușeni is a village in Rîșcani District, Moldova.[3] References ^ Lista primarilor ale...
German communist writer (1900–1974) Li De redirects here. For the Tang dynasty prince, see Prince Zhanghuai. This article is about the Comintern adviser in China. For the Prime Minister of Prussia, see Otto Braun. For the German poet, see Otto Braun (poet). This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs additional citations for verification. Please help improve this ...
العلاقات التشيكية الدومينيكانية التشيك جمهورية الدومينيكان التشيك جمهورية الدومينيكان تعديل مصدري - تعديل العلاقات التشيكية الدومينيكانية هي العلاقات الثنائية التي تجمع بين التشيك وجمهورية الدومينيكان.[1][2][3][4][5] مقارنة بين البلدي�...
Space where every point locally resembles a hyperbolic space In mathematics, a hyperbolic manifold is a space where every point looks locally like hyperbolic space of some dimension. They are especially studied in dimensions 2 and 3, where they are called hyperbolic surfaces and hyperbolic 3-manifolds, respectively. In these dimensions, they are important because most manifolds can be made into a hyperbolic manifold by a homeomorphism. This is a consequence of the uniformization theorem for s...