Непере́рвна фу́нкція — в математичному аналізі це функція, у якій малим змінам аргумента відповідають малі зміни значення функції. Це означає, що графік неперервної функції не має стрибків, тобто може бути накреслений «не відриваючи олівець від паперу».
Неперервні функції трапляються набагато частіше, ніж диференційовні, множина всіх неперервних функцій замкнена відносно арифметичних операцій (за винятком ділення) і композиції та утворює чи не найважливіший клас функцій в аналізі.
Означення
Функція дійсної змінної, яка означена в області , неперервна в точці якщо для довільного знайдеться таке (яке залежить від ), що з випливає
Функція неперервна в області , якщо неперервна в кожній точці цієї області.
Якщо умова, що входить у визначення неперервності функції, в деякій точці порушується, то кажуть, що розглянута функція має в даній точці розрив. Інакше кажучи, якщо — значення функції в точці , то межа такої функції (якщо він існує) не збігається з . Мовою околів умова розривності функції в точці є запереченням умови неперервності розглянутої функції в даній точці, а саме: існує такий окіл точки в області значень функції , що як би ми близько не підходили до точки в області визначення функції завжди знайдуться такі точки, образи яких будуть за межами околу точки .
Класифікація точок розриву в R¹
Класифікація розривів функцій залежить від того, як влаштовані множини X та Y. Далі наведено класифікацію для найпростішого випадку функції . Подібним чином класифікують і особливі точки (точки, де функція не визначена).
Якщо функція має розрив в даній точці (тобто границя функції в даній точці відсутня або не збігається зі значенням функції в даній точці), то для числових функцій виникає два можливих варіанти, пов'язаних з існуванням у числових функцій односторонніх границь:
якщо обидві односторонні границі існують і скінченні, то таку точку називають точкою розриву першого роду. До точок розриву першого роду відносять усувні розриви і стрибки.
якщо хоча б одна з односторонніх границь не існує або не є скінченою величиною, то таку точку називають точкою розриву другого роду. До точок розриву другого роду відносять полюси і точки суттєвого розриву.
Усувна точка розриву
Якщо границя функції існує і скінченна, але функція не визначена в цій точці, або границя не збігається зі значенням функції в даній точці: ,
то точка називається точкою усувного розриву функції (в комплексному аналізі — усувна особлива точка).
Якщо «виправити» функцію у точці усувного розриву і покласти , то вийде функція, неперервна в даній точці. Така операція над функцією називається довизначенням функції до неперервної або довизначенням функції за неперервністю, що і обґрунтовує назву точки, як точки усувного розриву.
Точка розриву «стрибок»
Розрив «стрибок» виникає, якщо
.
Точка розриву «полюс»
Розрив «полюс» виникає, якщо одна з односторонніх границь нескінченна.
або .
Точка суттєвого розриву
У точці суттєвого розриву одна з односторонніх границь взагалі відсутня.
Класифікація ізольованих особливих точок в Rn, n>1
Для функцій та немає потреби працювати з точками розриву, але нерідко доводиться працювати з особливими точками (точками, де функція не визначена). Класифікація подібна.
Якщо , то це усувна особлива точка (аналогічно функції дійсного аргументу).
Полюс визначається як . В багатовимірних просторах, якщо модуль числа росте, вважається, що , яким шляхом б він не ріс.
Якщо границя взагалі не існує, це суттєва особлива точка.
Поняття «стрибок» відсутнє. Те, що в вважається стрибком, в просторах більших розмірностей — суттєва особлива точка.
Властивості
Локальні
Функція, неперервна в точці , є обмеженою в деякому околі цієї точки.
Якщо функція неперервна в точці і (або ), то (або ) для всіх, досить близьких до .
Якщо функції та неперервні в точці ,то функції та теж неперервні в точці .
Якщо функції та неперервні в точці і при цьому , то функція теж неперервна в точці .
Якщо функція неперервна в точці та функція неперервна в точці , то їх композиція неперервна в точці .
Областю значень функції , неперервної на відрізку , є відрізок де мінімум і максимум беруться по відрізку .
Якщо функція неперервна на відрізку та то існує точка в якій .
Якщо функція неперервна на відрізку і число задовольняє нерівності або нерівності то існує точка у котрій .
Неперервне відображення відрізка в дійсну пряму ін'єктивне в тому і тільки в тому випадку, коли дана функція на відрізку строго монотонна .
Монотонна функція на відрізку неперервна в тому і тільки в тому випадку, коли область її значень є відрізком з кінцями та .
Якщо функції и неперервні на відрізку , причому та то існує точка в якій Звідси, зокрема, випливає, що будь-яке неперервне відображення відрізка в себе має хоча б одну нерухому точку.
Топологічні
Вивчення топологічних властивостей неперервних функцій відбувається шляхом їх розшарування на гомотопічні класи, де кожний клас складається з функцій, які можуть неперервно деформуватися одна в одну. Нехай та — топологічні простори, а та — неперервні функції, які відображають в . Відзначимо одиничний інтервал на дійсній прямій Тоді функції та є гомотопними, якщо існує неперервна функція , яка відображає у , для якої а Неперервна функція , яка описує неперервну деформацію функції у , називається гомотопією. Кожний гомотопічний клас характеризується степенем відображення яку називають топологічним індексом. Усі функції, які відображають у , можна розбити на гомотопічні класи, такі, що дві функції належать одному класові, якщо вони є гомотопними.
Приклади
Елементарні функції
Довільні многочлени, раціональні функції, показові функції, логарифми, тригонометричні функції (прямі і зворотні) неперервні скрізь у своїй області визначення.
Функція з усувним розривом
Функція задається формулою
неперервна в будь-якій точці Точка є точкою усувного розриву, бо границя функції
, в той час як в самій точці функція обертається в нуль.
Ступінчаста функція
Ступінчаста функція, яка визначається як
є всюди неперервна, крім точки , де функція терпить розрив першого роду. Проте, в точці існує правобічна границя, яка збігається зі значенням функції в даній точці. Таким чином, дана функція є прикладом неперервної справа функції на всій області визначення .
Аналогічно, ступінчаста функція, яка визначається як
є прикладом неперервної зліва функції на всій області визначення .
називається функцією Діріхле . По суті, функція Діріхле — це характеристична функція множини раціональних чисел . Ця функція є всюди розривною функцією, оскільки на кожному інтервалі існують як раціональні, так і ірраціональні числа.
Функція Рімана
функція
називається функцією Рімана або функцією Тома.
Ця функція є неперервною всюди у множині ірраціональних чисел (), оскільки границя функції в кожній точці дорівнює нулю.
Функція називається рівномірно неперервної на , якщо для будь-якого існує таке, що для будь-яких двох точок і яких, що , виконується .
Кожна рівномірно неперервна на множині функція, очевидно, є також і неперервною на ньому. Зворотне, взагалі кажучи, невірно. Однак, якщо область визначення — компакт, то неперервна функція виявляється також і рівномірно неперервною на даному відрізку.
Існує дві симетричні одна до одної властивості — напівнеперервна знизу і напівнеперервна зверху :
функція напівнеперервна знизу в точці , якщо для будь-якого існує така околиця , що для будь-якого ;
функція називається напівнеперервна зверху в точці , якщо для будь-якого існує такий окіл точки , що для будь-якого .
Між неперервністю і напівнеперервністю є такий зв'язок:
якщо взяти функцію , неперервну в точці , і зменшити значення (на кінцеву величину), то ми отримаємо функцію, напівнеперервну знизу в точці ;
якщо взяти функцію , неперервну в точці , і збільшити значення на кінцеву величину), то ми отримаємо функцію, напівнеперервну зверху в точці .
Відповідно до цього можна допустити для напівнеперервних функцій нескінченні значення:
якщо , то будемо вважати таку функцію напівнеперервна знизу в точці ;
якщо ,то будемо вважати таку функцію напівнеперервна зверху в точці .
Одностороння неперервність
Функція називається односторонньо неперервною зліва (справа) в кожній точці її області визначення, якщо для односторонньої границі виконується рівняння:
Неперервність майже всюди
На дійсній прямій зазвичай розглядається проста лінійна міра Лебега. Якщо функція така, що вона неперервна всюди на , крім, можливо, множини міри нуль, то така функція називається неперервною майже всюди .
У тому випадку, коли множина точок розриву функції не більше ніж зліченна, ми отримуємо клас інтегрованих за Ріманом функцій (див. Критерій інтегрованості функції за Ріманом).
Неперервність функції // Вища математика в прикладах і задачах / Клепко В.Ю., Голець В.Л.. — 2-ге видання. — К. : Центр учбової літератури, 2009. — С. 225. — 594 с.