Малага-Коста-дель-Соль
|
Read other articles:
Jakob MeisenheimerJakob MeisenheimerLahir(1876-06-14)14 Juni 1876Griesheim (Frankfurt am Main), Kekaisaran JermanMeninggal2 Desember 1934(1934-12-02) (umur 58)Tübingen, JermanTempat tinggalJermanKebangsaanJermanAlmamaterUniversitas MunichDikenal atasKompleks Meisenheimer, Mekanisme rearansemen BeckmannKarier ilmiahInstitusiUniversitas Munich, Universitas Greifswald, Universitas TübingenPembimbing doktoralFriedrich Karl Johannes Thiele Jakob Meisenheimer (14 Juni 1876 – ...
本條目存在以下問題,請協助改善本條目或在討論頁針對議題發表看法。 此條目需要补充更多来源。 (2018年3月17日)请协助補充多方面可靠来源以改善这篇条目,无法查证的内容可能會因為异议提出而被移除。致使用者:请搜索一下条目的标题(来源搜索:羅生門 (電影) — 网页、新闻、书籍、学术、图像),以检查网络上是否存在该主题的更多可靠来源(判定指引)。 �...
For the TV series of the same name, see Get a Grip (TV series). 1993 studio album by AerosmithGet a GripStudio album by AerosmithReleasedApril 20, 1993[1]RecordedJanuary–February andSeptember–November 1992Studio A&M, Los Angeles Little Mountain Sound, Vancouver, Canada[2] Genre Hard rock glam metal[3] Length62:06LabelGeffenProducerBruce FairbairnAerosmith chronology Pump(1989) Get a Grip(1993) Nine Lives(1997) Singles from Get a Grip Livin' on the EdgeR...
Education in Connecticut covers the public and private schools of all levels from colonial era to the present. Originally an offshoot of Massachusetts, colonial Connecticut was committed to Puritanism's high regard for education.[1] Yale College became a national model for higher education.[2] Immigration in the 19th century brought a large working class Catholic element that supported vocational training,[3] as well as a distinctive parochial educational system.[4...
Potret Susan Strange tahun 1980. Susan Strange (9 Juni 1923, Dorset – 25 Oktober 1998, Aylesbury, Buckinghamshire) adalah ilmuwan hubungan internasional Britania Raya yang menciptakan sebagian besar bidang studi ekonomi politik internasional.[1] Karya-karya Strange yang terkenal adalah Casino Capitalism (1986), States and Markets (1988), The Retreat of the State (1996), dan Mad Money (1998). Karya Sterling and British Policy: A Political Study of an International Currency in Decline...
Kota ParepareKotaTranskripsi bahasa daerah • Lontara Bugisᨀᨚᨈ ᨄᨑᨙᨄᨑᨙDari kiri kanan, atas ke bawah: Monumen Habibie Ainun, Masjid Terapung B.J. Habibie, GPIB Immanuel Parepare, dan Taman Mattirotasi. LambangJulukan: Kota Cinta Habibie & AinunMotto: ᨆᨔᨗᨉᨗ ᨔᨗᨑᨗ ᨆᨔᨗᨉᨗ ᨁᨕᨘ massiddi siri massiddi gau(Bugis) Satu prinsip, satu perbuatanPetaKota PareparePetaTampilkan peta SulawesiKota ParepareKota Parepare (Indonesia)...
Organisation in the Cayman Islands Cayman Islands Society of Professional AccountantsAbbreviationCISPAFormation1970HeadquartersCayman IslandsRegion Cayman IslandsOfficial language EnglishPresidentBaron JacobWebsitewww.cispa.ky The Cayman Islands Society of Professional Accountants (CISPA) is a professional association of accountants in the Cayman Islands, a British Overseas Territory in the Caribbean. CISPA is responsible for licensing accounting practitioners, supports education of accountan...
Voce principale: Alma Juventus Fano 1906. Alma Juventus Fano 1906Stagione 2016-2017Sport calcio Squadra Fano Allenatore Giovanni Cusatis (1ª-22ª), poi Agatino Cuttone (22ª-38ª) All. in seconda Massimo Scardovi(1ª-38ª) Presidente Claudio Gabellini Lega Pro17° StadioRaffaele Mancini 8.880 Abbonati981 Maggior numero di spettatori2.475 vs Mantova (2 aprile 2017) Minor numero di spettatori1.056 vs Lumezzane (11 dicembre 2016) Media spettatori1.693 2015-2016 2017-2018 Si invita a segui...
Fundamental theorem in mathematical logic Not to be confused with Gödel's incompleteness theorems. The formula (∀x. R(x,x)) → (∀x∃y. R(x,y)) holds in all structures (only the simplest 8 are shown left). By Gödel's completeness result, it must hence have a natural deduction proof (shown right). Gödel's completeness theorem is a fundamental theorem in mathematical logic that establishes a correspondence between semantic truth and syntactic provability in first-order logic. The comple...
Thornton Wilder a Yale nel 1920 Premio Pulitzer nel 1928 Premio Pulitzer nel 1938 Premio Pulitzer nel 1943 Thornton Niven Wilder (Madison, 17 aprile 1897 – Hamden, 7 dicembre 1975) è stato un drammaturgo e scrittore statunitense vincitore di tre premi Pulitzer: uno per il romanzo Il ponte di San Luis Rey e due per il teatro; inoltre ottenne il National Book Award per L'ottavo giorno (The Eight Day) nel 1968. Indice 1 Biografia 1.1 Vita privata 2 Opere 2.1 Prosa 2.2 Teatro 3 Raccolte 4 Trad...
Города Казахстана Статус города в Казахстане имеют 90 населённых пунктов, из них 27 являются моногородами, или каждый третий (30 %)[1]. В городах проживает 62,2 % населения республики. 3 города находятся на первом, 39 городов на втором, 48 городов на третьем уровне админист...
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: The Far Country novel – news · newspapers · books · scholar · JSTOR (December 2009) (Learn how and when to remove this message) 1952 novel by Nevil Shute The Far Country First edition (Heinemann)AuthorNevil ShuteCountryAustraliaLanguageEnglishGenreFictionP...
Oxazoline Names Preferred IUPAC name 4,5-Dihydro-1,3-oxazole Other names Δ2-oxazoline Identifiers CAS Number 504-77-8 (2-oxazoline) Y95879-85-9 (3-oxazoline) N6569-13-7 (4-oxazoline) N 3D model (JSmol) Interactive image ChemSpider 61465 Y ECHA InfoCard 100.007.274 PubChem CID 68157 UNII 31TB4J57Y5 (2-oxazoline) Y CompTox Dashboard (EPA) DTXSID9052139 InChI InChI=1S/C3H5NO/c1-2-5-3-4-1/h3H,1-2H2 YKey: IMSODMZESSGVBE-UHFFFAOYSA-N Y S...
يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (نوفمبر 2019) كأس الاتحاد الإنجليزي 1982–83 تفاصيل الموسم كأس الاتحاد الإنجليزي النسخة 102 البلد المملكة المتحدة...
В статье не хватает ссылок на источники (см. рекомендации по поиску). Информация должна быть проверяема, иначе она может быть удалена. Вы можете отредактировать статью, добавив ссылки на авторитетные источники в виде сносок. (7 июня 2019) Автоматические авиационные пушки Зен...
This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: History of the Big 12 Conference – news · newspapers · books · scholar · JSTOR (July 2021) (Learn how and ...
English actress DamePenelope WiltonLady HolmDBEWilton in Stockholm, Sweden, November 2013Born (1946-06-03) 3 June 1946 (age 78)Scarborough, EnglandAlma materDrama Centre LondonOccupationActorYears active1969–presentSpouses Daniel Massey (m. 1975; div. 1984) Sir Ian Holm (m. 1991; div. 2001)Children1RelativesLinden Travers (aunt) Bill Travers (uncle) Angela Morant (cousin) R...
Railway station in Pakistan This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: Bahram Hathiun railway station – news · newspapers · books · scholar · JSTOR (January 2016) Bahram Hathiun Stationبحرم ہاتھیوں اسٹیشنGeneral informationOwned byMinistry of RailwaysLine(s)Larkana–Jacobabad...
Legislative Assembly constituency in Karnataka, India ChintamaniConstituency No. 143 for the Karnataka Legislative AssemblyConstituency detailsCountryIndiaRegionSouth IndiaStateKarnatakaDistrictChikballapurLS constituencyKolarEstablished1951Total electors225,460[1]ReservationNoneMember of Legislative Assembly16th Karnataka Legislative AssemblyIncumbent M. C. Sudhakar PartyIndian National CongressElected year2023Preceded byJ. K. Krishna Reddy Chintamani Assembly constituency is one of ...
This article is about what mathematicians call intuitive or naive set theory. For a more detailed account, see Naive set theory. For a rigorous modern axiomatic treatment of sets, see Set theory. Collection of mathematical objects A set of polygons in an Euler diagram This set equals the one depicted above since both have the very same elements. In mathematics, a set is a collection of different[1] things;[2][3][4] these things are called elements or members of...