У Вікіпедії є статті про інші значення цього терміна: Клітка (значення).
n-клітка — кубічний граф обхвату n з найменшим можливим числом вершин. Граф називається кубічним, якщо з кожної його вершини виходять 3 ребра. Обхват графа — це довжина найменшого циклу в ньому.
4-клітка — К3,3, один з двох мінімальних не планарних графів, 6 вершин.
5-клітка — граф Петерсена, 10 вершин. Мінімальний кубічний граф з індексом самоперетину 2.
6-клітка — граф Хівуда, 14 вершин. Розбивається на 1-фактори (тобто, реберно розфарбовуємий), будь-яка сума двох чинників утворює гамільтонів цикл. Мінімальний кубічний граф з індексом самоперетину 3.
7-клітка — граф Маꥳ, 24 вершини. Мінімальний кубічний граф з індексом самоперетину 8.
(r,n)-клітка — регулярний граф ступеня r (тобто з кожної вершини якого виходить рівно r ребер) та обхвату n з найменшим можливим числом вершин.
Тривіальні сімейства
(2,n)-клітками є, очевидно, циклічні графи Cn
(r-1,3)-клітки — повні графи Кr з r вершин
(r,4)-клітки — повні двочасткові графи Кr,r, у яких в кожній долі знаходиться по r вершин
Нетривіальні представники
(7,5)-клітка — граф Гофмана — Синглтона, 50 вершин.
Відомі ще деякі клітки. У таблиці нижче показано кількість вершин в (r,n)-клітинах ступеня 3≤r≤7 та обхвату 3≤n≤12. Клітки для цих та великих r и n описані тут: [1] (англійською мовою).
Кількість вершин в (r,n)-клітці більше або дорівнює
для непарних n та
для парних.
Якщо має місце рівність, то відповідний граф називається графом Мура. У той час як клітка існує для будь-яких r > 2 і n > 2, нетривіальних графів Мура набагато менше. З вищезгаданих клітин, графами Мура є граф Петерсена, граф Хівуда, граф Татта — Коксетера і граф Гофмана — Синглтона. Доведено,[1][2][3] що всі непарні випадки вичерпуються n = 5, r = 2, 3, 7 та, можливо, 57, а парні n = 6, 8, 12.
Примітки
↑Bannai, E. and Ito, T. «On Moore Graphs.» J. Fac. Sci. Univ. Tokyo Ser. A 20, 191—208, 1973
↑Damerell, R. M. «On Moore Graphs.» Proc. Cambridge Philos. Soc. 74, 227—236, 1973
↑Hoffman, A. J. and Singleton, R. R. «On Moore Graphs of Diameter 2 and 3.» IBM J. Res. Develop. 4, 497—504, 1960