Нейронна мережа складається з групи нейронних ланцюгів — груп мофро-функціонально пов'язаних нейронів. Один нейрон може бути пов'язаний із багатьма іншими нейронами за допомогою нейронних відростків — довгих аксонів та коротких розгалуджених дендритів. З загальна кількість нейронів і зв'язків в мережі може бути достатньо великим, наприклад, мозок людини містить до 100 мільярдів нейронів[4] і кожен нейрон може з'єднуватись з великою кількістю, до 10 000, інших нейронів, передаючи сигнали один одному через 1000 трильйонів синапсів.[5] Місце контакту нейронів називається синапсом, типовий синапс — аксо-дендричнийхімічний. Передача імпульсів здійснюється хімічним шляхом за допомогою нейромедіаторів або електричним шляхом за допомогою проходження іонів з однієї клітини в іншу.
Перші згадки про нейронні мережі помічені у Бейна[6] (1873) та Джеймса[7] (1890) — у своїх роботах вони розглядають розумову діяльність як результат взаємодії між нейронами головного мозку.
Згідно з Бейном, будь-яка діяльність веде до активізації певного набору нейронів. При повторенні тієї ж діяльності зв'язок між цими нейронами зміцнюються. Згідно з його теорією, ці повторення ведуть до формування пам'яті. Наукове співтовариство того часу сприйняло теорію скептично, оскільки її наслідком було виникнення надмірної кількості нейронних зв'язків у мозку. Тепер очевидно, що мозок є надзвичайно складною конструкцією і здатний працювати з декількома завданнями одночасно.
Теорія Джеймса була схожа з теорією Бейна, але в той же час Джеймс припустив, що формування пам'яті відбувається в результаті проходження електричного струму між нейронами в головному мозку, не вимагаючи з'єднань нейронів для кожного акту запам'ятовування або дії.
Британський фізіологШеррінгтон у 1898 році провів експерименти для перевірки теорії Джеймса[8], в яких пропускав електричний струм уздовж спинного мозку щурів. При цьому замість очікуваного посилення струму, відповідно до теорії Джеймса, Шеррінгтон виявив, що електричний струм слабшає з плином часу. Результати експериментів Шеррінгтона зіграли важливу роль у розробці теорії звикання (габітуації).
У 1949 році Дональд Гебб стверджував, що нейронні зв'язки не є статичними — їх можна покращувати кожного разу, коли вони активуються. Ця гіпотеза відома як «правило Гебба». Воно передбачає, що процес навчання не є результатом фіксованої властивості нейронів; це залежна від часу функція їх змінних зв'язків. Основна ідея, яка лежить в основі правила Гебба, полягає в тому, що скупчення нейронів мають тенденцію збуджуватися разом, коли сприймається подразник. Їх коливальна активність може тривати і після припинення дії подразника. Таким чином, подія, яка спричинила одночасне коливання групи нейронів, фіксується в пам’яті у вигляді групи синхронізованих нейронів.[9]
Ці характеристики БНМ значною мірою виграють від природи біологічних нейронів і їх мереж в обробці інформації.[14] Нейрон, основна одиниця БНМ, обробляє інформацію, запускаючи потенціали дії (ПД; або спайки) відповідно до свого мембранного потенціалу (різниця між внутрішнім і зовнішнім потенціалами нейрона) за принципом «усе або нічого»: коли його мембранний потенціал перевищує поріг спрацьовування знизу, нейрон запускає ПД. Крім того, синапс з’єднує 2 нейрони, завдяки чому ПД, що випромінює пресинаптичний нейрон, викликає зміну мембранного потенціалу постсинаптичного нейрона, таким чином сигнал передається від пресинаптичного нейрона до постсинаптичного нейрона. Крім того, сила синапсів адаптивно змінюється у відповідь на вхідні сигнали та відповіді постсинаптичних нейронів, які, як вважають, лежать в основі нейропластичності — здатності мозку навчатися та зберігати спогади[15].
Barrett, David GT; Morcos, Ari S; Macke, Jakob H (2019). Analyzing biological and artificial neural networks: challenges with opportunities for synergy?. Current Opinion in Neurobiology (англ.) 55. с. 55–64. doi:10.1016/j.conb.2019.01.007.
Powell Henry; Winkel Mathias; Hopp Alexander V.; Linde, Helmut (2022). A hybrid biological neural network model for solving problems in cognitive planning. Scientific Reports (англ.) 12 (1). doi:10.1038/s41598-022-11567-0.
Suhaimi Ahmad; Lim Amos W. H.; Chia Xin Wei; Li Chunyue; Makino Hiroshi (2022). Representation learning in the artificial and biological neural networks underlying sensorimotor integration. Science Advances (англ.) 8 (22). doi:10.1126/sciadv.abn0984.
Chen Zhe; Liang Qian; Wei Zihou; Chen Xie; Shi Qing; Yu Zhiqiang; Sun Tao (2023). An Overview of In Vitro Biological Neural Networks for Robot Intelligence. Cyborg and Bionic Systems (англ.) 4. doi:10.34133/cbsystems.0001.
↑Sherrington, C.S. Experiments in Examination of the Peripheral Distribution of the Fibers of the Posterior Roots of Some Spinal Nerves. Proceedings of the Royal Society of London. 190: 45—186.
↑Bear, Mark F.; Connors, Barry W.; Paradiso, Michael A. (2016). Neuroscience: exploring the brain (вид. Enhanced fourth edition). Burlington, MA: Jones & Bartlett Learning. ISBN978-1-284-21128-3.
В іншому мовному розділі є повніша стаття Biological neural network(англ.). Ви можете допомогти, розширивши поточну статтю за допомогою перекладу з англійської.
Перекладач повинен розуміти, що відповідальність за кінцевий вміст статті у Вікіпедії несе саме автор редагувань. Онлайн-переклад надається лише як корисний інструмент перегляду вмісту зрозумілою мовою. Не використовуйте невичитаний і невідкоригований машинний переклад у статтях української Вікіпедії!
Машинний переклад Google є корисною відправною точкою для перекладу, але перекладачам необхідно виправляти помилки та підтверджувати точність перекладу, а не просто скопіювати машинний переклад до української Вікіпедії.
Не перекладайте текст, який видається недостовірним або неякісним. Якщо можливо, перевірте текст за посиланнями, поданими в іншомовній статті.