f(x), bir reel değişkenin reel değerli fonksiyonu olsun. Eğer aşağıdaki eşitlik, f tanım kümesindeki tüm x ve -x ler için sağlanıyorsa f, çifttir :
Geometriksel olarak ifade etmek gerekirse, bir çift fonksiyonun grafiği, y eksenine göre simetriktir. Yani y eksenine göre yansıtıldıktan sonra bile grafiği değişmez.
Çift fonksiyonlara örnek, |x|, x2, x4, cos(x) ve cosh(x). Mutlak degerli ifadelerin tamamı çift fonksiyondur.
Tek fonksiyon
f(x), bir reel değişkenin reel değerli fonksiyonu olsun. Eğer aşağıdaki eşitlik, f tanım kümesindeki tüm x ve -x ler için sağlanıyorsa f, tektir :
veya
Geometriksel olarak ifade etmek gerekirse, bir tek fonksiyonun grafiği, orijine göre simetriktir Yani orijine göre 180 derece döndürüldükten sonra bile grafiği değişmez.
Tek fonksiyonlara örnek; x, x3, sin(x), sinh(x) ve erf(x).
Bazı durumları
Tek veya çift fonksiyon, sürekli olsa bile diferansiyellenebilir anlamına gelmez. Örneğin her yerde ayrık fonksiyon çifttir. Fakat hiçbir yerde sürekli değildir. Çiftlik durumu her iki alandada farklı incelenir.
Temel özellikler
Tanım kümesi tüm reel sayılar için hem çift hem de tek olan fonksiyon sabit fonksiyondur ve aynı zamanda sıfırdır. (örneğin tüm x ler için, f(x) = 0).
İki çift fonksiyonun toplamı çifttir. Bir çift fonksiyonun bir sabit ile çarpımı çifttir.
İki tek fonksiyonun toplamı tektir. Bir tek fonksiyonun bir sabit ile çarpımı tektir.
Çift fonksiyon ile tek fonksiyonun bileşkesi çifttir.
Ya tek ya da çift fonksiyon ile çift fonksiyonun bileşkesi çifttir (fakat tersi geçerli değildir).
Tek fonksiyonunun, −A dan +A ya integrali sıfırdır. (burada A, sonludur ve fonksiyonun −A danA ya, dikey asimptotu yoktur).
Çift fonksiyonun −A dan +A ya integrali, 0'dan +A ya iki kez integraline eşittir. (burada A, sonludur ve fonksiyonun −A dan A ya dikey asimptotu yoktur.) A sonsuz olduğunda, ancak ve ancak integral yakınsıyorsa bu doğrudur.
Tek ve çift fonksiyonların toplamı
Her fonksiyon, çift ve tek fonksiyonu toplamı ile ifade edilebilir. İspat:
, tüm reel sayılarda tanımlı herhangi bir fonksiyon olsun.
Bunu, şöyle de sembolize edebiliriz:
Periyodik tek fonksiyonun Fourier serisinde yalnızca sinüs terimi bulunur.
Cebirsel yapı
Çift fonksiyonun herhangi bir doğrusal kombinasyonu çifttir ve çift fonksiyonlar reel sayılar üzerindeki vektör uzayında bulunur. Benzer şekilde tek fonksiyonun herhangi bir doğrusal kombinasyonu tektir ve tek fonksiyonlar da reel sayılar üzerinde vektör uzayında bulunur. Tüm reel değerli fonksiyonların vektör uzayı, tek ve çift fonksiyonların alt uzaylarınındoğrudan toplamıdır. Başka bir ifade ile her f(x) fonksiyonu, çift fonksiyon ve tek fonksiyonun toplamı olarak eşsiz biçinde yazılabilir:
burada
çifttir ve
tektir. Örneğin; eğer füstel ise, fe, cosh vefo sinh olur.