PROFILPELAJAR.COM
Privacy Policy
My Blog
New Profil
Kampus
Prov. Aceh
Prov. Bali
Prov. Bangka Belitung
Prov. Banten
Prov. Bengkulu
Prov. D.I. Yogyakarta
Prov. D.K.I. Jakarta
Prov. Gorontalo
Prov. Jambi
Prov. Jawa Barat
Prov. Jawa Tengah
Prov. Jawa Timur
Prov. Kalimantan Barat
Prov. Kalimantan Selatan
Prov. Kalimantan Tengah
Prov. Kalimantan Timur
Prov. Kalimantan Utara
Prov. Kepulauan Riau
Prov. Lampung
Prov. Maluku
Prov. Maluku Utara
Prov. Nusa Tenggara Barat
Prov. Nusa Tenggara Timur
Prov. Papua
Prov. Papua Barat
Prov. Riau
Prov. Sulawesi Barat
Prov. Sulawesi Selatan
Prov. Sulawesi Tengah
Prov. Sulawesi Tenggara
Prov. Sulawesi Utara
Prov. Sumatera Barat
Prov. Sumatera Selatan
Prov. Sumatera Utara
Partner
Ensiklopedia Dunia
Artikel Digital
Literasi Digital
Jurnal Publikasi
Kumpulan Artikel
Profil Sekolah - Kampus
Dokumen 123
Rasyonel fonksiyonların integralleri
Bu madde
hiçbir
kaynak
içermemektedir
.
Lütfen
güvenilir kaynaklar ekleyerek
madde içeriğinin geliştirilmesine
yardımcı olun. Kaynaksız içerik itiraz konusu olabilir ve
kaldırılabilir
.
Kaynak ara:
"Rasyonel fonksiyonların integralleri"
–
haber
·
gazete
·
kitap
·
akademik
·
JSTOR
(
Aralık 2015
)
(
Bu şablonun nasıl ve ne zaman kaldırılması gerektiğini öğrenin
)
Aşağıdaki liste
rasyonel fonksiyonların
integrallerini
vermektedir
∫ ∫ -->
(
a
x
+
b
)
n
d
x
=
(
a
x
+
b
)
n
+
1
a
(
n
+
1
)
(
n
≠ ≠ -->
− − -->
1
(for )
{\displaystyle \int (ax+b)^{n}dx={\frac {(ax+b)^{n+1}}{a(n+1)}}\qquad {\text{( }}n\neq -1{\text{(for )}}\,\!}
∫ ∫ -->
d
x
a
x
+
b
=
1
a
ln
-->
|
a
x
+
b
|
{\displaystyle \int {\frac {dx}{ax+b}}={\frac {1}{a}}\ln \left|ax+b\right|}
∫ ∫ -->
x
(
a
x
+
b
)
n
d
x
=
a
(
n
+
1
)
x
− − -->
b
a
2
(
n
+
1
)
(
n
+
2
)
(
a
x
+
b
)
n
+
1
(for
n
∉
{
− − -->
2
,
− − -->
1
}
)
{\displaystyle \int x(ax+b)^{n}dx={\frac {a(n+1)x-b}{a^{2}(n+1)(n+2)}}(ax+b)^{n+1}\qquad {\text{(for }}n\not \in \{-2,-1\}{\text{)}}}
∫ ∫ -->
x
a
x
+
b
d
x
=
x
a
− − -->
b
a
2
ln
-->
|
a
x
+
b
|
{\displaystyle \int {\frac {x}{ax+b}}dx={\frac {x}{a}}-{\frac {b}{a^{2}}}\ln \left|ax+b\right|}
∫ ∫ -->
x
(
a
x
+
b
)
2
d
x
=
b
a
2
(
a
x
+
b
)
+
1
a
2
ln
-->
|
a
x
+
b
|
{\displaystyle \int {\frac {x}{(ax+b)^{2}}}dx={\frac {b}{a^{2}(ax+b)}}+{\frac {1}{a^{2}}}\ln \left|ax+b\right|}
∫ ∫ -->
x
(
a
x
+
b
)
n
d
x
=
a
(
1
− − -->
n
)
x
− − -->
b
a
2
(
n
− − -->
1
)
(
n
− − -->
2
)
(
a
x
+
b
)
n
− − -->
1
(for
n
∉
{
1
,
2
}
)
{\displaystyle \int {\frac {x}{(ax+b)^{n}}}dx={\frac {a(1-n)x-b}{a^{2}(n-1)(n-2)(ax+b)^{n-1}}}\qquad {\text{(for }}n\not \in \{1,2\}{\text{)}}}
∫ ∫ -->
x
2
a
x
+
b
d
x
=
1
a
3
(
(
a
x
+
b
)
2
2
− − -->
2
b
(
a
x
+
b
)
+
b
2
ln
-->
|
a
x
+
b
|
)
{\displaystyle \int {\frac {x^{2}}{ax+b}}dx={\frac {1}{a^{3}}}\left({\frac {(ax+b)^{2}}{2}}-2b(ax+b)+b^{2}\ln \left|ax+b\right|\right)}
∫ ∫ -->
x
2
(
a
x
+
b
)
2
d
x
=
1
a
3
(
a
x
+
b
− − -->
2
b
ln
-->
|
a
x
+
b
|
− − -->
b
2
a
x
+
b
)
{\displaystyle \int {\frac {x^{2}}{(ax+b)^{2}}}dx={\frac {1}{a^{3}}}\left(ax+b-2b\ln \left|ax+b\right|-{\frac {b^{2}}{ax+b}}\right)}
∫ ∫ -->
x
2
(
a
x
+
b
)
3
d
x
=
1
a
3
(
ln
-->
|
a
x
+
b
|
+
2
b
a
x
+
b
− − -->
b
2
2
(
a
x
+
b
)
2
)
{\displaystyle \int {\frac {x^{2}}{(ax+b)^{3}}}dx={\frac {1}{a^{3}}}\left(\ln \left|ax+b\right|+{\frac {2b}{ax+b}}-{\frac {b^{2}}{2(ax+b)^{2}}}\right)}
∫ ∫ -->
x
2
(
a
x
+
b
)
n
d
x
=
1
a
3
(
− − -->
1
(
n
− − -->
3
)
(
a
x
+
b
)
n
− − -->
3
+
2
b
(
n
− − -->
2
)
(
a
x
+
b
)
n
− − -->
2
− − -->
b
2
(
n
− − -->
1
)
(
a
x
+
b
)
n
− − -->
1
)
(for
n
∉
{
1
,
2
,
3
}
)
{\displaystyle \int {\frac {x^{2}}{(ax+b)^{n}}}dx={\frac {1}{a^{3}}}\left(-{\frac {1}{(n-3)(ax+b)^{n-3}}}+{\frac {2b}{(n-2)(ax+b)^{n-2}}}-{\frac {b^{2}}{(n-1)(ax+b)^{n-1}}}\right)\qquad {\text{(for }}n\not \in \{1,2,3\}{\text{)}}}
∫ ∫ -->
d
x
x
(
a
x
+
b
)
=
− − -->
1
b
ln
-->
|
a
x
+
b
x
|
{\displaystyle \int {\frac {dx}{x(ax+b)}}=-{\frac {1}{b}}\ln \left|{\frac {ax+b}{x}}\right|}
∫ ∫ -->
d
x
x
2
(
a
x
+
b
)
=
− − -->
1
b
x
+
a
b
2
ln
-->
|
a
x
+
b
x
|
{\displaystyle \int {\frac {dx}{x^{2}(ax+b)}}=-{\frac {1}{bx}}+{\frac {a}{b^{2}}}\ln \left|{\frac {ax+b}{x}}\right|}
∫ ∫ -->
d
x
x
2
(
a
x
+
b
)
2
=
− − -->
a
(
1
b
2
(
a
x
+
b
)
+
1
a
b
2
x
− − -->
2
b
3
ln
-->
|
a
x
+
b
x
|
)
{\displaystyle \int {\frac {dx}{x^{2}(ax+b)^{2}}}=-a\left({\frac {1}{b^{2}(ax+b)}}+{\frac {1}{ab^{2}x}}-{\frac {2}{b^{3}}}\ln \left|{\frac {ax+b}{x}}\right|\right)}
∫ ∫ -->
d
x
x
2
+
a
2
=
1
a
arctan
-->
x
a
{\displaystyle \int {\frac {dx}{x^{2}+a^{2}}}={\frac {1}{a}}\arctan {\frac {x}{a}}\,\!}
∫ ∫ -->
d
x
x
2
− − -->
a
2
=
− − -->
1
a
artanh
-->
x
a
=
1
2
a
ln
-->
a
− − -->
x
a
+
x
(for
|
x
|
<
|
a
|
)
{\displaystyle \int {\frac {dx}{x^{2}-a^{2}}}=-{\frac {1}{a}}\operatorname {artanh} {\frac {x}{a}}={\frac {1}{2a}}\ln {\frac {a-x}{a+x}}\qquad {\text{(for }}|x|<|a|{\text{)}}\,\!}
∫ ∫ -->
d
x
x
2
− − -->
a
2
=
− − -->
1
a
arcoth
-->
x
a
=
1
2
a
ln
-->
x
− − -->
a
x
+
a
(for
|
x
|
>
|
a
|
)
{\displaystyle \int {\frac {dx}{x^{2}-a^{2}}}=-{\frac {1}{a}}\operatorname {arcoth} {\frac {x}{a}}={\frac {1}{2a}}\ln {\frac {x-a}{x+a}}\qquad {\text{(for }}|x|>|a|{\text{)}}\,\!}
∫ ∫ -->
d
x
a
x
2
+
b
x
+
c
=
2
4
a
c
− − -->
b
2
arctan
-->
2
a
x
+
b
4
a
c
− − -->
b
2
(for
4
a
c
− − -->
b
2
>
0
)
{\displaystyle \int {\frac {dx}{ax^{2}+bx+c}}={\frac {2}{\sqrt {4ac-b^{2}}}}\arctan {\frac {2ax+b}{\sqrt {4ac-b^{2}}}}\qquad {\text{(for }}4ac-b^{2}>0{\text{)}}}
∫ ∫ -->
d
x
a
x
2
+
b
x
+
c
=
2
b
2
− − -->
4
a
c
artanh
-->
2
a
x
+
b
b
2
− − -->
4
a
c
=
1
b
2
− − -->
4
a
c
ln
-->
|
2
a
x
+
b
− − -->
b
2
− − -->
4
a
c
2
a
x
+
b
+
b
2
− − -->
4
a
c
|
(for
4
a
c
− − -->
b
2
<
0
)
{\displaystyle \int {\frac {dx}{ax^{2}+bx+c}}={\frac {2}{\sqrt {b^{2}-4ac}}}\operatorname {artanh} {\frac {2ax+b}{\sqrt {b^{2}-4ac}}}={\frac {1}{\sqrt {b^{2}-4ac}}}\ln \left|{\frac {2ax+b-{\sqrt {b^{2}-4ac}}}{2ax+b+{\sqrt {b^{2}-4ac}}}}\right|\qquad {\text{(for }}4ac-b^{2}<0{\text{)}}}
∫ ∫ -->
d
x
a
x
2
+
b
x
+
c
=
− − -->
2
2
a
x
+
b
(for
4
a
c
− − -->
b
2
=
0
)
{\displaystyle \int {\frac {dx}{ax^{2}+bx+c}}=-{\frac {2}{2ax+b}}\qquad {\text{(for }}4ac-b^{2}=0{\text{)}}}
∫ ∫ -->
x
a
x
2
+
b
x
+
c
d
x
=
1
2
a
ln
-->
|
a
x
2
+
b
x
+
c
|
− − -->
b
2
a
∫ ∫ -->
d
x
a
x
2
+
b
x
+
c
{\displaystyle \int {\frac {x}{ax^{2}+bx+c}}dx={\frac {1}{2a}}\ln \left|ax^{2}+bx+c\right|-{\frac {b}{2a}}\int {\frac {dx}{ax^{2}+bx+c}}}
∫ ∫ -->
m
x
+
n
a
x
2
+
b
x
+
c
d
x
=
m
2
a
ln
-->
|
a
x
2
+
b
x
+
c
|
+
2
a
n
− − -->
b
m
a
4
a
c
− − -->
b
2
arctan
-->
2
a
x
+
b
4
a
c
− − -->
b
2
(for
4
a
c
− − -->
b
2
>
0
)
{\displaystyle \int {\frac {mx+n}{ax^{2}+bx+c}}dx={\frac {m}{2a}}\ln \left|ax^{2}+bx+c\right|+{\frac {2an-bm}{a{\sqrt {4ac-b^{2}}}}}\arctan {\frac {2ax+b}{\sqrt {4ac-b^{2}}}}\qquad {\text{(for }}4ac-b^{2}>0{\text{)}}}
∫ ∫ -->
m
x
+
n
a
x
2
+
b
x
+
c
d
x
=
m
2
a
ln
-->
|
a
x
2
+
b
x
+
c
|
+
2
a
n
− − -->
b
m
a
b
2
− − -->
4
a
c
artanh
-->
2
a
x
+
b
b
2
− − -->
4
a
c
(for
4
a
c
− − -->
b
2
<
0
)
{\displaystyle \int {\frac {mx+n}{ax^{2}+bx+c}}dx={\frac {m}{2a}}\ln \left|ax^{2}+bx+c\right|+{\frac {2an-bm}{a{\sqrt {b^{2}-4ac}}}}\operatorname {artanh} {\frac {2ax+b}{\sqrt {b^{2}-4ac}}}\qquad {\text{(for }}4ac-b^{2}<0{\text{)}}}
∫ ∫ -->
m
x
+
n
a
x
2
+
b
x
+
c
d
x
=
m
2
a
ln
-->
|
a
x
2
+
b
x
+
c
|
− − -->
2
a
n
− − -->
b
m
a
(
2
a
x
+
b
)
(For
4
a
c
− − -->
b
2
=
0
)
{\displaystyle \int {\frac {mx+n}{ax^{2}+bx+c}}dx={\frac {m}{2a}}\ln \left|ax^{2}+bx+c\right|-{\frac {2an-bm}{a(2ax+b)}}\qquad {\text{(For }}4ac-b^{2}=0{\text{)}}}
∫ ∫ -->
d
x
(
a
x
2
+
b
x
+
c
)
n
=
2
a
x
+
b
(
n
− − -->
1
)
(
4
a
c
− − -->
b
2
)
(
a
x
2
+
b
x
+
c
)
n
− − -->
1
+
(
2
n
− − -->
3
)
2
a
(
n
− − -->
1
)
(
4
a
c
− − -->
b
2
)
∫ ∫ -->
d
x
(
a
x
2
+
b
x
+
c
)
n
− − -->
1
{\displaystyle \int {\frac {dx}{(ax^{2}+bx+c)^{n}}}={\frac {2ax+b}{(n-1)(4ac-b^{2})(ax^{2}+bx+c)^{n-1}}}+{\frac {(2n-3)2a}{(n-1)(4ac-b^{2})}}\int {\frac {dx}{(ax^{2}+bx+c)^{n-1}}}\,\!}
∫ ∫ -->
x
(
a
x
2
+
b
x
+
c
)
n
d
x
=
b
x
+
2
c
(
n
− − -->
1
)
(
4
a
c
− − -->
b
2
)
(
a
x
2
+
b
x
+
c
)
n
− − -->
1
− − -->
b
(
2
n
− − -->
3
)
(
n
− − -->
1
)
(
4
a
c
− − -->
b
2
)
∫ ∫ -->
d
x
(
a
x
2
+
b
x
+
c
)
n
− − -->
1
{\displaystyle \int {\frac {x}{(ax^{2}+bx+c)^{n}}}dx={\frac {bx+2c}{(n-1)(4ac-b^{2})(ax^{2}+bx+c)^{n-1}}}-{\frac {b(2n-3)}{(n-1)(4ac-b^{2})}}\int {\frac {dx}{(ax^{2}+bx+c)^{n-1}}}\,\!}
∫ ∫ -->
d
x
x
(
a
x
2
+
b
x
+
c
)
=
1
2
c
ln
-->
|
x
2
a
x
2
+
b
x
+
c
|
− − -->
b
2
c
∫ ∫ -->
d
x
a
x
2
+
b
x
+
c
{\displaystyle \int {\frac {dx}{x(ax^{2}+bx+c)}}={\frac {1}{2c}}\ln \left|{\frac {x^{2}}{ax^{2}+bx+c}}\right|-{\frac {b}{2c}}\int {\frac {dx}{ax^{2}+bx+c}}}
∫ ∫ -->
x
2
r
+
y
2
r
=
r
{\displaystyle \int {\frac {x^{2}}{r}}+{\frac {y^{2}}{r}}=r}
∫ ∫ -->
|
x
|
+
|
y
|
=
|
n
|
{\displaystyle \int \ |x|+|y|=|n|}
Ayrıca bakınız
İntegral tablosu
g
t
d
İntegral listeleri
Rasyonel fonksiyonlar
İrrasyonel fonksiyonlar
Trigonometrik fonksiyonlar
Ters trigonometrik fonksiyonlar
Hiperbolik fonksiyonlar
Ters hiperbolik fonksiyonlar
Üstel fonksiyonlar
Logaritmik fonksiyonlar
Gauss fonksiyonları
Belirli integraller