Matematik konularının listesi,matematik ile ilgili çeşitli konuları kapsar. Bu listelerden bazıları yüzlerce makaleye bağlantı içerir; bazıları sadece birkaç tane ile bağlantılıdır. Bu makale, aynı içeriği, göz atmaya daha uygun bir şekilde organize halde bir araya getirmektedir. Listeler, temel ve ileri matematik, metodoloji, matematiksel ifadeler, integraller, genel kavramlar, matematiksel nesneler ve referans tablolarının özelliklerini kapsar. Ayrıca insanların adını taşıyan denklemleri, matematiksel toplulukları, matematikçileri, matematik dergilerini ve meta listeleri de kapsar.
Bu listenin amacı, American Mathematical Society tarafından formüle edilen Matematik Konu Sınıflandırmasına benzer değildir. Birçok matematik dergisi, araştırma makalelerinin ve açıklayıcı makalelerin yazarlarından, makalelerinde Matematik Konu Sınıflandırmasındaki konu kodlarını listelemelerini ister. Bu şekilde listelenen konu kodları, iki ana gözden geçirme veritabanı olan Mathematical Reviews ve Zentralblatt MATH tarafından kullanılmaktadır. Bu liste, üstel konuların listesi ve faktöryel ve binom konuların listesi gibi bu tür bir sınıflandırmaya uymayan bazı öğeler içerir; bu, kapsama alanlarının çeşitliliği okuyucuyu şaşırtabilir.
Temel matematik
Bu dal tipik olarak orta öğretimde veya üniversitenin ilk yılında öğretilir.
Kabaca bir kılavuz olarak, bu liste, gerçekte bu dallar örtüşse ve iç içe geçse de, saf ve uygulamalı bölümlere ayrılmıştır.
Saf matematik
Cebir
Cebir, kümeler ve belirli aksiyomları karşılayan bu kümeler üzerinde tanımlanmış işlemlerden oluşan cebirsel yapılar hakkındaki çalışmaları içerir. Cebir alanı ayrıca hangi yapının çalışıldığına göre bölünmüştür; Örneğin, grup teorisigrup adı verilen bir cebirsel yapısı ile ilgilidir.
Kalkülüs, reel sayıların fonksiyonlarının limitlerinin, türevlerinin ve integrallerinin hesaplanmasını ve özellikle anlık değişim oranlarını inceler. Analiz, kalkülüsten gelişmiştir.
Geometri başlangıçta daire ve küp gibi uzamsal şekillerin incelenmesidir, ancak oldukça genelleştirilmiştir. Geometriden geliştirilen topoloji; boyutlar gibi gerilip bükülerek şekiller deforme edildiğinde bile değişmeyen özelliklere bakar.
Mantık, matematiksel mantığın ve matematiğin geri kalanının altında yatan temeldir. Geçerli muhakemeyi biçimlendirmeye ve nedenselleştirmeye çalışır. Özellikle bir ispatı neyin oluşturduğunu tanımlamaya çalışır.
Sayıların özellikleri ve ilişkileri ile, özellikle pozitif tam sayılarla ilgilenen matematik dalıdır. Sayı teorisi, esas olarak tam sayıların ve tam sayı değerli fonksiyonların çalışılmasına adanmış bir saf matematik dalıdır. Alman matematikçi Carl Friedrich Gauss, "Matematik bilimlerin kraliçesidir ve sayı teorisi matematiğin kraliçesidir" dedi. Sayı teorisi ayrıca doğal veya tam sayıları da inceler. Sayı teorisindeki temel kavramlardan biri asal sayılardır ve basit görünen ancak çözümü matematikçilerden kaçmaya devam eden asal sayılar hakkında birçok soru vardır.
Diferansiyel denklem, bilinmeyen bir fonksiyonu ve türevlerini içeren bir denklemdir.
Dinamik bir sistemde sabit bir kural, geometrik bir uzaydaki bir noktanın zamana bağlılığını tanımlar. Bir saat sarkacının sallanmasını, bir borudaki suyun akışını veya her bahar bir göldeki balık sayısını tanımlamak için kullanılan matematiksel modeller dinamik sistemlere örnektir.
Matematiksel fizik, "matematiğin fizikteki problemlere uygulanması, bu tür uygulamalar için uygun matematiksel yöntemlerin geliştirilmesi ve fiziksel teorilerin formülasyonu" ile ilgilenir.1
Matematik ve hesaplamanın alanları hem bilgisayar bilimi, algoritmalar ve veri yapılarının incelenmesi hem de matematik, bilim ve mühendislikteki problemleri çözmek için algoritmik yöntemlerin incelenmesi olan bilimsel hesaplamada kesişir.
Yöneylem araştırması, tipik olarak gerçek dünya sistemlerinin performansını iyileştirme veya optimize etme amacıyla, karar vermeye yardımcı olmak için matematiksel modellerin, istatistiklerin ve algoritmaların incelenmesi ve kullanılmasıdır.
Matematiksel bir ifade, bazı matematiksel gerçeklerin, formüllerin veya yaplarının bir önermesi veya iddiası anlamına gelir. Bu tür ifadeler aksiyomları ve bunlardan kanıtlanabilecek teoremleri, kanıtlanmamış veya hatta kanıtlanamayan varsayımları ve ayrıca matematiksel olarak ifade edilebilen soruların cevaplarını hesaplamak için algoritmaları içerir.
Matematiksel nesneler arasında sayılar, fonksiyonlar, kümeler, şu veya bu türden "uzaylar" olarak adlandırılan çok çeşitli şeyler, halkalar, gruplar veya alanlar (cisimler) gibi cebirsel yapılar ve diğer birçok şey bulunur.
Matematikçiler matematiğin tüm farklı alanlarında çalışır ve araştırma yapar. Matematikte yeni keşiflerin yayınlanması, çoğu matematiğe adanmış ve çoğu matematiğin uygulandığı konulara (teorik bilgisayar bilimi ve teorik fizik gibi) ayrılmış yüzlerce bilimsel dergide büyük bir hızla devam etmektedir.
Analizde, bir fonksiyonun integrali alan, kütle, hacim, toplam ve totalin bir genellemesidir. Aşağıdaki sayfalarda birçok farklı fonksiyonun integralleri listelenmektedir.