Fırlatma araçları genellikle, yörüngeye çıkarabildikleri yük miktarı üzerinden sınıflandırılırlar. Örneğin, bir Proton roketi, alçak Dünya yörüngesine (ADY) 22 bin kg (49 bin lb) kadar yükü çıkarabilmektedir. Fırlatma araçları ayrıca içerdikleri aşama (İng:multistage rocket) sayısına göre tanımlanırlar. Şimdiye kadar en fazla 5 aşamalı roketler başarıyla fırlatılmışlardır ve tek-aşamada-yörüngeye (İng:single-stage-to-orbit) türündeki araçlar için pek çok farklı tasarım yapılmıştır. Buna ek olarak, fırlatma araçları sıklıkla başlangıçta çok yüksek itki/sevk sağlayan ve diğer motorlarla birlikte ateşlenen hızlandıcılar ile desteklenmektedirler. Hızlandırıcılar sayesinde kalan motorların daha küçük olması mümkün olmaktadır bu da beraberinde sonraki aşamaların taşıması gereken ham yükü azalatarak daha büyük görev-yüklerinin taşınabilmesini getirir.
Fırlatma araçlarının sıklıkla bildirilen diğer özellikleri ise fırlatmayı gerçekleştiren ulus veya uzay kuruluşu/ajansı ile fırlatma aracını üreten ve fırlatmayı yapan şirket veya girişim ortaklığı bilgisidir. Örneğin, Avrupa Uzay AjansıAriane V aracından sorumludur ve United Launch Alliance girişim ortaklığı ise Delta IV ve Atlas V roketlerinin üretiminden ve fırlatılışından sorumludur. Pek çok fırlatma aracı aynı ya da benzer isme sahip bir fırlatma aracı ailesinin/dizisinin bir parçası sayılır; örneğin Atlas V kullanımdaki en son Atlas roketidir.
Fırlatma araçlarını boyutlarına göre sınıflandırmanın pek çok yolu vardır.ABD sivil uzay kuruluşu, NASA, Uzay Mekiği'ni değiştirme planlarını incelemesi için oluşturulmuş olan Augustine Komisyonu tarafından açıkça ifade edilmiş olan bir sınıflandırma taslağı[kaynak belirtilmeli] kullanmaktadır:
Süper-ağır-yük aracı 50 bin kg (110 bin lb)'dan fazla ağırlıktaki görev-yükünü ADY'e çıkarabilmektedir.[7][8]
Başlıca Avrupalı fırlatma hizmeti sağlayıcısı olan Arianespace, kendisine ait olan ve ADY'e 20 bin kg (44,000 lb)'dan fazla görev-yükü taşıyan Ariane 5 fırlatma aracını da ayrıca "ağır-yük" fırlatma aracı olarak sınıflandırmıştır[9]
ve ADY'e 2 bin–20 bin kg (4400–44100 lb) arası yük taşıyan fırlatma aracı dizisini (Starsem/Arianespace Soyuz ST ve 1999-öncesi Ariane 5 versiyonları dahil olmak üzere) "orta-yük" fırlatma aracı olarak sınıflandırmıştır.[10] Kendisine ait olan ve ADY'e 1500 kg (3300 lb) ağırlığında görev-yükü taşıyabilen Vega fırlatma aracını ise "hafif-yük" ("light lift") olarak sınıflandırmıştır.[10]
Yörünge-altı fırlatma araçları taşıdıkları görev-yüklerini; Dünya'nın ortalama yarıçapından küçük bir perije noktasına sahip olan bir alçak Dünya yörüngesi elde etmek için gerekli olan en düşük yatay hıza (7800 m/s - 26 bin ft/s) çıkaramazlar.
Sondaj roketleri uzun zamandan beridir kısa süreli, ucuz, insansız uzay ve düşük-yerçekimi deneyleri için kullanılmaktadır. ABD'nin ilk insanlı uzay-uçuşu programı olan Mercury Projesi, daha sonraki uçuşlarda astronotları yörüngeye çıkarmadan önce ilk iki astronotu (Alan Shephard ve Gus Grissom), tek-aşamalı Redstone roket ailesi türevi bir roketle (İng:en:Mercury-Redstone Launch Vehicle) yörünge-altı uçuş için fırlatmıştır. Günümüzdeki insanlı-uçuşa-uygun (human-rated) yörünge-altı fırlatma araçları arasında SpaceShipOne ve SpaceShipTwo bulunmaktadır (bakınız: Uzay turizmi).
Dünya'nın yüzeyinden fırlatma için gerekli olan Delta-v değeri en düşük yörüngesel hızdan daha büyüktür (en az 9300 m/s - 31,000 ft/s), bunun sebepleri arasında (Balistik katsayısı tarafından belirlenen) hava sürtünmesi, yerçekimi kaynaklı verim kayıpları (İng:gravity losses) ve daha yüksek irtifaya ulaşmak için gerekli olan daha yüksek potansiyel enerji sayılabilir. İrtifa kazanmak için gerekli olan delta-v değeri değişiklik gösterir, ancak genellikle her 200 km (120 mi) değerindeki irtifa değişimi için 2 km/s (1.2 mi/s) civarındandır.[kaynak belirtilmeli]
Hava sürtünmesini en aza indirmek için yeterince yüksek bir balistik katsayı değeri gerekmektedir, bu da uzunluğun yaklaşık olarak çapın 10 katı olması demektedir. Bu da genel olarak fırlatma aracının en az 20 m uzunluğunda olması ile sonuçlanır. Atmosferi, uçuşun olabildiğince başlarında terkedebilmek, hava sürtünmesi sebebiyle 300 m/s (980 ft/s) civarında bir hız kaybına sebep olur.
Fırlatma için toplam delta-v hesaplanması karmaşık bir işlemdir ve neredeyse tüm durumlarda sayısal integral (İng: numerical integration) kullanılır; çoklu delta-v değerleri eklemek karamsar bir sonuç (pessimistic result) edilmesini sağlar, çünkü roket yörüngeye ulaşmak için yere göre belirli bir açıyla yol alabilir, böylece aynı anda hem irtifa hem de yatay hız kazanırken yakıttan tasarruf etmiş olur.[kaynak belirtilmeli]
Bir uzay aracının Ay'a ulaşabilmesi için, Dünya'dan kurtulma hızı olan 11200 m/s (37 bin ft/s) değerine ulaşması gerekmemektedir, ancak buna yakın bir hız aracı yüksek apoje değerine sahip bir Dünya yörüngesine oturtacaktırve eğer doğru zamanda fırlatma gerçekleştirilmişse araç Ay'ın çekim etkisine gireceği bir noktaya varacaktır.
Gezegenler-arası uçuş kurtulma hızını aşmayı gerektirir; fazladan hız ya dış gezegenlere veya asteroidlere ulaşmak için Dünya'nın Güneş çevresindeki yörüngesel hızına eklenir (örn:aracı Dünya'nın Güneş'in etrafındaki dönüş yönünde fırlatma) ya da Venüs'e veya Merkür'e ulaşmak için yörüngesel hızdan çıkarılır (örn:aracı Dünya'nın Güneş'in etrafındaki dönüş yönünün tersine fırlatma), bu durum son hızın (terminal velocity) ulaşıldığı yöne göre değişmektedir.
Yeterli büyüklükteki fırlatma araçları Ay ve ötesine, yörüngeye taşıyabildiklerinden daha küçük görev-yüklerini götürebilirler. Ay-Doğrultusundaki ve gezegenler-arası uçuşlarda, aracın doğrudan son hıza ulaşacak şekilde fırlatılması yerine, uzay aracında gerekli denetimlerin yapılması ve aracı hedef doğrultuya sokacak olan manevranın daha kesin yönetilebilmesi için, genellikle aracın son aşaması geçici duraklama yörüngesine (temporary parking orbit) ulaşacak şekilde fırlatma yapılır.
Parçaların birleştirilmesi
Bir roketin her bir aşaması genellikle üretim sahasında birleştirilir ve fırlatma sahasına gönderilir; araç montajı (vehicle assembly) roket aşamaları ile uzay-aracı görev-yükünün tek bir bütün oluşturacak şekilde birleştirilmesi işlemini ifade eder. Boyut ölçeğinin daha küçük kısmında olan tek-aşamalı araçlar (örn: sondaj roketleri) ve çok aşamalı araçlar, genellikle doğrudan fırlatma rampası üzerinde, vinç yardımıyla her bir aşama ve uzay aracı dikey olarak sırasıyla taşınarak birleştirilebilir.
Bu yaklaşım daha büyük uzay taşıtları için uygun değildir, bunun yerine rampa dışında tamamıyla birleştirildikten sonra fırlatma alanındaki konumuna çeşitli yöntemler kullanılarak taşınırlar. NASA'nın Apollo/Saturn V insanlı Ay'a iniş aracı ve Uzay Mekiği, Vehicle Assembly Building (İng:Vehicle Assembly Building) bünyesinde, gezici fırlatıcı rampaları (İng:mobile launcher platform) üzerinde fırlatma bağlantı kuleleri eklenerek dikey olarak birleştirilir. Daha sonra özel bir paletli-taşıyıcı (İng:crawler-transporter), tüm bu araçlar yığınını fırlatma rampasına dik konumda taşır.
Tersine, Rus yapımı Soyuz roketi ve SpaceX şirketinin Falcon 9 roketi üretim binasında yatay olarak birleştirildikten ve fırlatma rampasına yatay olarak taşındıktan sonra, rampada dik konuma getirilirler.
Başka bir kelime seçeneği olarak, Vanguard Projesi (İng:Project Vanguard) kapsamında, İngilizce "Satellite Launching Vehicle" ("Uydu Fırlatma Aracı") cümlesinin kısaltması olan "SLV" kelimesi kullanılmıştır. Böylece roketlerin hangi tür iş için tahsis edildiklerini gösteren liste için yeni bir terim kazandırılmış oldu: uçuş testi veya bir uydunun gerçekten fırlatılması. Bu kısaltma ayrıca diğer gezegenlere ya da gezegenler-arası boşluğa sonda gönderen roketler için de kullanılır.[kaynak belirtilmeli]
Düzenlemeler
Uluslararası yasalara göre, fırlatma aracının sahibinin uyruğu, hangi ülkenin o araçtan doğabilecek zararlardan sorumlu olduğunu belirler.
Buna göre, bazı ülkeler, roket üreticilerinin ve fırlatıcılarının; uçuştan etkilenebilecek olan mülklerin ve insanların güvenliğini korumak ve gerektiğinde tazminat verilmesini sağlamak üzere, belirli düzenlemelere uymalarını zorunlu koşar.[kaynak belirtilmeli]
^Uzay aracı fırlatılması amacıyla, açık arazi ya da demiryolu aracı temelli Rus yapımı herhangi bir gezici fırlatma aracı (İng:mobile launcher) bulunmamaktadır
^HSF Final Report: Seeking a Human Spaceflight Program Worthy of a Great Nation 16 Şubat 2019 tarihinde Wayback Machine sitesinde arşivlendi., October 2009, Review of U.S. Human Spaceflight Plans Committee, p. 64-66: "5.2.1 The Need for Heavy Lift ... require a “super heavy-lift” launch vehicle ... range of 25 to 40 mt, setting a notional lower limit on the size of the super heavy-lift launch vehicle if refueling is available ... this strongly favors a minimum heavy-lift capacity of roughly 50 mt ..."
S. A. Kamal: Dot-Product Steering: A New Control Law for Satellites and Spacecrafts - Nokta-Ürün Yönlendirmesi: Uydular ve Uzay araçları için Yeni bir Yönetim Yasası, Kaynak: IBCAST 2002, Cilt 1, Advanced Materials, Computational Fluid Dynamics and Control Engineering, Hoorani HR, Munir A, Samar R, Zahir S, National Center for Physics, Bhurban, KP, Pakistan, 2003, 178–184 arası sayfalar Ücretsiz Tam Metin 8 Aralık 2015 tarihinde Wayback Machine sitesinde arşivlendi.