Ett topologiskt rum är uppräkneligt kompakt om varje framställning av mängden som en uppräknelig union av öppna mängder kan skrivas som en union av ett ändligt antal öppna mängder:
Denna definition är ekvivalent med följande egenskaper:
Varje följd av element i mängden har en ackumuleringspunkt som är ett element i .
Varje familj bestående av uppräkneligt många slutna delmängder vars snitt är icke-tomt, har en ändlig delfamilj av slutna mängder vars snitt också är icke-tomt.