Segunda División de Chile 1991 |
Read other articles:
Peta menunjukkan lokasi Lapinig Lapinig adalah munisipalitas yang terletak di provinsi Samar Utara, Filipina. Pada tahun 2010, munisipalitas ini memiliki populasi sebesar 11.198 jiwa dan 2.163 rumah tangga. Pembagian wilayah Secara administratif Lapinig terbagi menjadi 15 barangay, yaitu: Alang-alang Bagacay Cahagwayan Can Maria Can Omanio Imelda Lapinig Del Sur (Pob.) Lapinig Del Norte (Pob.) Lo-ok Mabini May-igot Palanas Pio Del Pilar Potong Potong Del Sur Pranala luar Philippine Standard G...
本條目存在以下問題,請協助改善本條目或在討論頁針對議題發表看法。 此條目需要补充更多来源。 (2018年3月17日)请协助補充多方面可靠来源以改善这篇条目,无法查证的内容可能會因為异议提出而被移除。致使用者:请搜索一下条目的标题(来源搜索:羅生門 (電影) — 网页、新闻、书籍、学术、图像),以检查网络上是否存在该主题的更多可靠来源(判定指引)。 �...
FerdinandYang Mulia Raja Bangsa RumaniaRaja RumaniaBerkuasa10 Oktober [K.J.: 27 September] 1914-20 Juli 1927PendahuluKarol IPenerusMichael IInformasi pribadiKelahiran(1865-08-24)24 Agustus 1865Sigmaringen, JermanKematian20 Juli 1927(1927-07-20) (umur 61)Sinaia, RomaniaPemakaman23 Juli 1927Curtea de Argeş, RomaniaWangsaHouse of Hohenzollern-SigmaringenNama lengkapFerdinand Viktor Albert Meinrad of HohenzollernAyahPangeran Leopold dari Hohenzollern-SigmaringenIbuAntónia dari Portugal dan...
City in Colorado, United States Leadville redirects here. For other uses, see Leadville (disambiguation). Statutory city in Colorado, United StatesLeadville, ColoradoStatutory city[1]Downtown LeadvilleNickname(s): The Two-Mile-High City, Cloud City[3]Location of the City of Leadville in Lake County, ColoradoLeadvilleLocation of the City of Leadville in the United StatesCoordinates: 39°15′00″N 106°17′30″W / 39.25000°N 106.29167°W / 39.25...
Village in Kara Region, Togo Place in Kara Region, TogoBoukoukpanbeBoukoukpanbeLocation in TogoCoordinates: 9°25′N 0°38′E / 9.417°N 0.633°E / 9.417; 0.633Country TogoRegionKara RegionPrefectureBassarTime zoneUTC + 0 Boukoukpanbe is a village in the Bassar Prefecture of the Kara Region of northwestern Togo.[1] References ^ Maplandia world gazetteer vte Bassar Prefecture of the Kara RegionCapital: Bassar Afoou Akalede Aketa Akomomboua Alidounpo Apoeydoump...
Souliote commander and fighter Notis BotsarisΝότης ΜπότσαρηςNoti BoçariA portrait of Notis BotsarisNative nameNoti Boçari (Albanian)[1][2][3]Bornc. 1756Souli, Eyalet of Yanina, Ottoman Empire (now Greece)Died26 March 1841 (aged 84-85)Nafpaktos, Kingdom of GreeceAllegiance First Hellenic RepublicService/branch Hellenic ArmyRankLieutenant GeneralBattles/wars Greek War of Independence Third Siege of Missolonghi RelationsKitsos Botsaris (brother)Markos...
Chinese American man with queue in San Francisco's Chinatown The Pigtail Ordinance was an 1873 law intended to force prisoners in San Francisco, California to have their hair cut within an inch of the scalp. It affected Qing Chinese prisoners in particular, as it meant they would have their queue, a waist-long, braided pigtail, cut off. The proposal passed by a narrow margin through the San Francisco Board of Supervisors in 1873 but was vetoed by the mayor. An identical version of the law was...
SitunggalingDesaKantor Kepala Desa SitunggalingNegara IndonesiaProvinsiSumatera UtaraKabupatenKaroKecamatanMerekKode pos22173Kode Kemendagri12.06.05.2014 Luas... km²Jumlah penduduk... jiwaKepadatan... jiwa/km² Situnggaling merupakan salah satu desa yang ada di kecamatan Merek, Kabupaten Karo, provinsi Sumatera Utara, Indonesia.[1] Referensi ^ Purba, Li Enisa (2023). Kecamatan Merek Dalam Angka 2023. Badan Pusat Statistik Kabupaten Karo. hlm. 7. ISSN 2963-1696. P...
ヨハネス12世 第130代 ローマ教皇 教皇就任 955年12月16日教皇離任 964年5月14日先代 アガペトゥス2世次代 レオ8世個人情報出生 937年スポレート公国(中部イタリア)スポレート死去 964年5月14日 教皇領、ローマ原国籍 スポレート公国親 父アルベリーコ2世(スポレート公)、母アルダその他のヨハネステンプレートを表示 ヨハネス12世(Ioannes XII、937年 - 964年5月14日)は、ロ...
Mensur beralih ke halaman ini. Untuk orang bernama Mensur, lihat Mansur. Anggar AkademisDuel anggar mensur di Heidelberg tahun 1900FokusPersenjataanNegara asalJermanPenciptaBeragamOrang tuaSekolah Anggar JermanOlahraga olimpikTidak Anggar Akademis (Jerman: akademisches Fechtencode: de is deprecated disebut Mensur atau Schmisse) adalah versi akademik dari lomba pedang anggar yang sering dilakukan di negara Jerman, Austria, dan Swiss. Para lelaki akan berduel dengan rasa sportivitas dan biasany...
Sub-genre of jazz Spiritual jazzContemporary spiritual jazz musician Kamasi Washington performingStylistic origins Jazz post-bop modal jazz free jazz folk experimental Cultural origins Civil rights movement transcendence spirituality Other topics Free jazz avant-garde jazz free improvisation Spiritual jazz (or astral jazz)[1] is a sub-genre of jazz that originated in the United States during the 1960s. The genre is hard to characterize musically but draws from free, avant-garde and mo...
هذه المقالة عن محافظة القطيف. لمدينة والعاصمة الإدارية للمحافظة، طالع القطيف (مدينة). لمعانٍ أخرى، طالع قطيف (توضيح). محافظة القطيف محافظة القطيفشعار بلدية محافظة القطيف الموقع الجغرافي اللقب الخُطهجركيتوس تاريخ التأسيس 5000 سنة ق.م تقسيم إداري البلد السعودية[1 ...
Zenit-3SL as a part of Land Launch program Land Launch refers to a service product of Sea Launch SA. There is no entity or company called Land Launch. Sea Launch created the Land Launch offering to address lighter satellites directly into geosynchronous orbit or into geosynchronous transfer orbit, while Sea Launch continues to address the heavy satellite launch market.[1] In 2002, Sea Launch created Land Launch with its Russian and Ukrainian partners. The Russian and Ukrainian partner...
2023 South Korean romantic drama film SoulmateTheatrical release posterHangul소울메이트 Directed byMin Yong-geunScreenplay byKang Hyun-jooMin Yong-geunBased onSoul Mateby Derek TsangProduced byByun Seung-minStarringKim Da-miJeon So-neeByeon Woo-seokCinematographyKang Gook-hyunProductioncompaniesClimax Studio[1]Andmarq StudioStudio&NEWKeyEastDistributed byNext Entertainment World[2] Wide Lens PicturesRelease dates 15 March 2023 (2023-03-15) (South Ko...
鶴見虹子 2009年、世界選手権にて選手情報フルネーム 鶴見虹子国籍 日本生年月日 (1992-09-28) 1992年9月28日(31歳)生誕地 埼玉県身長 143cm(2021年7月時点)[1]種目 体操競技得意種目 段違い平行棒代表 2006年-2012年所属 フリー学歴 藤村女子中学校→大智学園高等学校→日本体育大学コーチ 陶暁敏元コーチ 陶暁敏引退 2015年11月29日 獲得メダル 世界選手権 銀 2009 段違い�...
Andreas DäscherBiographieNaissance 9 juin 1927DavosDécès 4 août 2023 (à 96 ans)MeilenNationalité suisseActivité Sauteur à skiFratrie Hans Däscher (en)Autres informationsSport Saut à skimodifier - modifier le code - modifier Wikidata Andreas Däscher, né le 9 juin 1927, mort le 4 août 2023[1] à Meilen[2], est un sauteur à ski suisse. Biographie Malgré des résultats modestes, il a révolutionné[3] la discipline en mettant au point une nouvelle technique de vol en collant l...
Bataille de Balaklava La charge de la brigade légère, huile sur toile de Richard Caton-Woodville, 1894. Informations générales Date 25 octobre 1854 Lieu Au large de Balaklava (Mer Noire) Issue Indécise Belligérants Empire britannique Empire français Empire ottoman Empire russe Commandants Lord Raglan Lord Cardigan Lord Scarlett François Certain Canrobert Pavel Liprandi (en) Jabrokristki Forces en présence Environ 12 000 hommes Environ 25 000 hommes Per...
Fabio Van den BosscheFabio Van den Bossche (2019)InformationsNaissance 21 septembre 2000 (23 ans)GandNationalité belgeÉquipe actuelle Alpecin-FenixÉquipes amateurs 2016John Saey2017-2018Davo-Tongeren01.2019-07.2019EFC-L&R-VulstekeÉquipes professionnelles 08.2019-12.2019Sport Vlaanderen-Baloise (stagiaire)2020-2021Sport Vlaanderen-Baloise2022-Alpecin-Fenixmodifier - modifier le code - modifier Wikidata Fabio van den Bossche, né le 21 septembre 2000 à Gand, est un coureur cyclist...
The mathematics of smooth surfaces Riemannian surface redirects here. Not to be confused with Riemann surface. Smooth surface redirects here. Not to be confused with Smooth function. Carl Friedrich Gauss in 1828 In mathematics, the differential geometry of surfaces deals with the differential geometry of smooth surfaces[a] with various additional structures, most often, a Riemannian metric.[b] Surfaces have been extensively studied from various perspectives: extrinsically, rel...
Law describing the pressure drop in an incompressible and Newtonian fluid Part of a series onContinuum mechanics J = − D d φ d x {\displaystyle J=-D{\frac {d\varphi }{dx}}} Fick's laws of diffusion Laws Conservations Mass Momentum Energy Inequalities Clausius–Duhem (entropy) Solid mechanics Deformation Elasticity linear Plasticity Hooke's law Stress Strain Finite strain Infinitesimal strain Compatibility Bending Contact mechanics frictional Material failure theory Fracture mec...