Овај чланак је започет или проширен кроз пројекат семинарских радова. Потребно је проверити превод, правопис и вики-синтаксу. Када завршите са провером, допишете да након |проверено=.
Усмерени граф је чврсто повезан уколико постоји пут од сваког чвора у графу до сваког другог чвора. Конкретно, то значи да постоје путеви у сваком смеру; пут од а до b, а такође, пут од b до а.
Чврсте компоненте повезаности усмереног графа G су његови максимално чврсто повезани подграфи. Ако је свака чврсто повезана компонента идентификована са једним чвором, резултат је усмерени ациклични граф, кондензације G. Усмерени граф је ацикличан ако и само ако нема чврсто повезане подграфе са више од једног чвора, зато што је усмерени циклус чврсто повезан и свака нетривијална чврсто повезана компонента садржи бар један усмерени циклус.
Алгоритми за проналажење чврсто повезаних компоненти могу да се користе за решавање проблема 2-SAT (системи Булових променљивих са ограничењима о вредностима парова променљивих): као што су Апсвал, Плас и Тарџан (1979) показали, 2-SAT пример је незадовољив ако и само ако постоји променљива v тако да се v и њен комплемент заједно налазе у истој чврсто повезаној компоненти од импликације графа примера.
Према Робинсовој теореми, неусмерен граф може бити оријентисан на такав начин да он постаје чврсто повезан, ако и само ако је на две гране повезан.
Литература
Aspvall, Bengt; Plass, Michael F.; Tarjan, Robert E. (1979), „A linear-time algorithm for testing the truth of certain quantified boolean formulas”, Information Processing Letters, 8 (3): 121—123, doi:10.1016/0020-0190(79)90002-4.