Nema kraja (strip)

Naslovna strana YU strip #204/1 u kome je objavljen strip Nema kraja, 1979.
Deseta strana stripa Nema kraja.

Nema kraja je kratak strip objavljen u magazinu YU strip, бр. 204/1, koji je tada još uvek izlazio kao posebno izdanje EKS alamanaha u izdanju Dečjih novina iz Gornjeg Milanovca. Cena sveske iznosila je 10 dinara. Izašla je 1979. god. Scenario je napisao Svetozar Obradović, a strip nacrtao Branislav Kerac. Imao je 12 strana.

Nastanak stripa

Strip je dobio 1. nagradu na konkursu za strip Dečjih novina 1979. godine. Ovaj strip nastao je kao reakcija tandema Kerac-Obradović na kritike (koja je došla od ljubitelja strip-pravca oličenog u Novom kvadratu) da prave samo stripove za razonodu. Ovo je bio njihov odgovor da umeju da naprave avangardni strip sa dorbim crtežom.[1]

Kratak sadržaj

Nepoznat stariji čovek dolazi u kuću dvoje mlađih viteza. Sa sobom nosi malu kutiju. Mladići ga pitaju šta je u kutijici, a on odgovara da se u njoj nalazi smrt. Mladići se smeju na ovakvo objašnjenje i otimaju mu kutijicu. Kada je otvore, vide da se u njoj nalazi gomila dragocenog nakita. Ubijaju starca. Jašući kroz šume, zamišljaju kako će im život biti lep kada iskoriste blago koju su stekli. Tokom puta, kod obojice se javlja ideja da bi mogli celo blago da zadrže za sebe. Stiću na obalu mora. Na peščanoj plaži između njih počinje dvoboj oko kutijice. Kutijica pada na pesak, a iz nakita se uzdiže lepa ratnica koja ih napada obojicu. Najpre ubija jednog, pa drugog. Na kraju ratnica pokazuje svoje lice – lice smrti. Posle nekog vremena dvoje brodolomnika uspevaju da ispllivaju na obalu i nailaze na kutijicu. Kod obojice se javlja ideja da bi mogli da je zadrže samo za sebe…

Reference

Read other articles:

Subfield of mathematics For Quine's theory sometimes called Mathematical Logic, see New Foundations. For other uses, see Logic (disambiguation). Part of a series onMathematics History Outline Index Areas Number theory Geometry Algebra Calculus and Analysis Discrete mathematics Logic and Set theory Probability Statistics and Decision theory Relationship with sciences Physics Chemistry Geosciences Computation Biology Linguistics Economics Philosophy Education Mathematics Portalvte Mathematical ...

 

 

Department store chain in Mexico See also: Sears in Latin America This article is about the Mexican chain of department stores. For the American department store chain, see Sears. For the defunct Canadian chain of department stores, see Sears Canada. For other uses, see Sears (disambiguation).This article contains content that is written like an advertisement. Please help improve it by removing promotional content and inappropriate external links, and by adding encyclopedic content written fr...

 

 

У этого термина существуют и другие значения, см. Кингисепп (значения). Запрос «Ямбург» перенаправляется сюда; см. также другие значения. ГородКингисепп Флаг Герб 59°22′41″ с. ш. 28°36′04″ в. д.HGЯO Страна  Россия Субъект Федерации Ленинградская область Муниципа�...

British general and colonial official For other people named Francis Nicholson, see Francis Nicholson (disambiguation). Lieutenant-GeneralFrancis NicholsonAlleged portrait of Francis Nicholson. There are no known authentic portraits of Nicholson.21st Governor of South CarolinaIn office1721–1725MonarchGeorge IPreceded byJames Moore Jr.Succeeded byArthur Middleton (acting)Governor of Nova ScotiaIn office1712–1715MonarchsAnneGeorge IPreceded bySamuel VetchSucceeded bySamuel VetchGovernor of ...

 

 

Former voivodeship of Poland from 1975 to 1998. Bielsko VoivodeshipVoivodeship of the Polish People's Republic and Third Republic of Poland1975–1998The administrative subdivisions of Poland from 1975 to 1998, including the Bielsko Voivodeship.CapitalBielsko-BiałaArea • 19973,704 km2 (1,430 sq mi)Population • 1975 779 300• 1997 924 000 Government • TypeVoivodeshipVoivode • 1975–1981 (first) Józef Łabudek• 1997�...

 

 

Order of insects including moths and butterflies LepidopteraTemporal range: Early Jurassic–Present, 200–0 Ma PreꞒ Ꞓ O S D C P T J K Pg N Peacock butterfly (Aglais io) Adhemarius gannascus, a species of sphinx moth Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Arthropoda Class: Insecta (unranked): Amphiesmenoptera Order: LepidopteraLinnaeus, 1758 Suborders Aglossata Glossata Heterobathmiina Rhopalocera Zeugloptera Lepidoptera (/ˌlɛpɪˈdɒptərə/ LEP-ih...

У этого термина существуют и другие значения, см. Петропавловка. СелоПетропавловка 51°00′15″ с. ш. 39°11′55″ в. д.HGЯO Страна  Россия Субъект Федерации Воронежская область Муниципальный район Лискинский Сельское поселение Петропавловское История и география Час...

 

 

Ciudad de San MarinoCittà di San Marino Capital de San Marino BanderaEscudo Ciudad de San MarinoLocalización de Ciudad de San Marino en San Marino Coordenadas 43°55′55″N 12°26′54″E / 43.932011111111, 12.44845Idioma oficial Italiano • Otros idiomas emiliano-romañolEntidad Capital de San Marino • País San MarinoCapitano Alessandro BarulliEventos históricos   • Fundación 3 de septiembre de 301Superficie   • Total 7.09 km²Alti...

 

 

LampihongKecamatanKantor kecamatan LampihongNegara IndonesiaProvinsiKalimantan SelatanKabupatenBalanganPemerintahan • CamatFitrana Wijaya, S.PdPopulasi • Total... jiwa jiwaKode Kemendagri63.11.05 Kode BPS6311010 Luas... km²Desa/kelurahan27/- Adat Perkawinan Suku Banjar Lampihong Balangan Kalsel Adat Batamat Qur'an Suku Banjar di Lampihong Balangan Kalsel Lampihong adalah sebuah kecamatan di Kabupaten Balangan, Provinsi Kalimantan Selatan, Indonesia. Penduduk Keca...

Kedutaan Besar Republik Indonesia di OttawaEmbassy of the Republic of Indonesia in OttawaAmbassade de la République d’Indonésie à OttawaKoordinat45°24′37″N 75°44′03″W / 45.410285°N 75.734178°W / 45.410285; -75.734178Lokasi Ottawa, KanadaAlamat55 Parkdale AvenueOttawa ON K1Y 1E5CanadaDuta BesarDaniel Tumpal Sumurung SimanjuntakYurisdiksi KanadaSitus webkemlu.go.id/ottawa/id Kedutaan Besar Republik Indonesia di Ottawa (KBRI Ottawa) (bahasa Inggris&#...

 

 

Pujangga dan kesatria pra-islam Antarah ibn Shaddad adalah sang pahlawan dalam romansa Arab yang populer. Sastra epos Arab meliputi epos puisi dan epos fantasi dalam kesusastraan Arab. Hampir semua masyarakat membudayakan folklor yang mencakup kisah-kisah kepahlawanan. Meskipun banyak yang berupa legenda, ada juga yang didasarkan pada peristiwa nyata dan tokoh-tokoh sejarah. Epos puisi Taghribat Bani Hilal adalah epos Arab yang menceritakan perjalanan Banu Hilal dari Mesir ke Tunisia dan pena...

 

 

Public transportation in Taiyuan, Shanxi, China Not to be confused with Taoyuan Metro. Taiyuan MetroOverviewLocaleTaiyuan, Shanxi, ChinaTransit typeRapid transitNumber of lines1Number of stations23Websitewww.tymetro.ltdOperationBegan operation26 December 2020; 3 years ago (2020-12-26)TechnicalSystem length23.65 km (14.70 mi)[1] System map The Taiyuan Metro is a rapid transit system in Taiyuan, capital of China's Shanxi province. The system opened on Decembe...

Транспорт Тайваню Транспортна система Тайваню (англ.)ТериторіяПлоща 35,9 тис. км² (139-те)Рельєф гористийНайвища точка гора Юшань (3952 м)ПовітрянийАеропортів 37 (107-ме)НаземнийАвтошляхів 42,5 тис. км (85-те)Залізниць 1,6 тис. км (78-ме)ВоднийУзбережжя 1,56 тис. кмГоловний порт ГаосюнТру�...

 

 

Alliance of political parties in France Front Populaire redirects here. For other fronts populaires, see Popular front. For the 2024 re-iteration, see New Popular Front. Popular Front Front populaireLeaderMaurice ThorezLéon Blum Camille ChautempsMarcel DéatFounded1936 (1936)Dissolved1938 (1938)Preceded byLefts CartelHeadquartersParisIdeologyAnti-fascismFactions: • Democratic socialism • Social democracy • Social liberalism ...

 

 

Men's beach volleyballat the Games of the XXXI OlympiadVenueCopacabana StadiumDates6–18 August 2016Competitors48 from 17 nationsTeams24Medalists Alison CeruttiBruno Oscar Schmidt  Brazil Daniele LupoPaolo Nicolai  Italy Alexander BrouwerRobert Meeuwsen  Netherlands← 20122020 → Volleyball at the2016 Summer OlympicsIndoorQualificationmenwomenTournamentmenwomenRostersmenwomenBeachQualificationmenwomenTournamentmenwomenvte The men's beach volleyba...

صالح بن أحمد بن حنبل تخطيط اسم صالح بن أحمد بن حنبل بخط الثُّلث، ملحوقًا بالترضي عنه: «». معلومات شخصية الميلاد سنة 818   بغداد  الوفاة سنة 879 (60–61 سنة)  أصفهان  مكان الدفن أصفهان  مواطنة الدولة العباسية  الأب أحمد بن حنبل  الأم عباسة بنت الفضل إخوة وأخوات عب...

 

 

هذه المقالة بحاجة لصندوق معلومات. فضلًا ساعد في تحسين هذه المقالة بإضافة صندوق معلومات مخصص إليها. اختراع آلة الطباعة قى القرن الخامس عشر الميلادي مع أطقم الحروف المحمولة بواسطة الألماني يوهان غوتنبرغ وهذا يعتبر الحدث الأكثر تأثيرا في العصر الحديث.[1] الجدول الزمني لل�...

 

 

17th and 18th-century Royal Navy admiral For other people with the same name, see Arthur Herbert (disambiguation). The Right HonourableThe Earl of TorringtonArthur Herbert, 1st Earl of Torrington, portrait by John ClostermanBornc.1648Died13 April 1716 (aged 67–68)[1]BuriedWestminster AbbeyAllegiance Kingdom of EnglandService/branch Royal NavyYears of service1663–1690RankAdmiralCommands heldHMS PembrokeHMS Constant WarwickHMS DragonHMS DreadnoughtHMS Cambrid...

Queen consort of Spain from 1879 to 1885 For the 18th-century archduchess, see Maria Christina, Duchess of Teschen. You can help expand this article with text translated from the corresponding article in Spanish. (December 2015) Click [show] for important translation instructions. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply...

 

 

Decomposition of an integer as a sum of positive integers This article is about partitioning an integer. For grouping elements of a set, see Partition of a set. For the partition calculus of sets, see Infinitary combinatorics. For the problem of partitioning a multiset of integers so that each part has the same sum, see Partition problem. Young diagrams associated to the partitions of the positive integers 1 through 8. They are arranged so that images under the reflection about the main diago...