8-Azaguanin

8-Azaguanin
Identifikacija
3D model (Jmol)
ChEBI
ChemSpider
DrugBank
ECHA InfoCard 100.004.681
  • NC1=NC2=C(NN=N2)C(O)=N1
Svojstva
C4H4N6O
Molarna masa 152,114
Tačka topljenja 300
Ukoliko nije drugačije napomenuto, podaci se odnose na standardno stanje materijala (na 25 °C [77 °F], 100 kPa).
ДаY verifikuj (šta je ДаYНеН ?)
Reference infokutije

8-Azaguanin je organsko jedinjenje, koje sadrži 4 atoma ugljenika i ima molekulsku masu od 152,114 Da.[3][4][5][6]

Osobine

Osobina Vrednost
Broj akceptora vodonika 6
Broj donora vodonika 3
Broj rotacionih veza 0
Particioni koeficijent[7] (ALogP) -0,1
Rastvorljivost[8] (logS, log(mol/L)) 0,3
Polarna površina[9] (PSA, Å2) 113,6

Reference

  1. ^ Li Q, Cheng T, Wang Y, Bryant SH (2010). „PubChem as a public resource for drug discovery.”. Drug Discov Today. 15 (23-24): 1052—7. PMID 20970519. doi:10.1016/j.drudis.2010.10.003.  уреди
  2. ^ Evan E. Bolton; Yanli Wang; Paul A. Thiessen; Stephen H. Bryant (2008). „Chapter 12 PubChem: Integrated Platform of Small Molecules and Biological Activities”. Annual Reports in Computational Chemistry. 4: 217—241. doi:10.1016/S1574-1400(08)00012-1. 
  3. ^ Tong, George L.; Lee, William W.; Goodman, Leon; Frederiksen, Sune (1965). „Synthesis of some 2′-deoxyribosides of 8-azaadenine”. Archives of Biochemistry and Biophysics. 112: 76—81. doi:10.1016/0003-9861(65)90012-3.  https://dx.doi.org/10.1016/0003-9861(65)90012-3 }-
  4. ^ Michels, A. W.; Ostrov, D. A.; Zhang, L.; Nakayama, M.; Fuse, M.; McDaniel, K.; Roep, B. O.; Gottlieb, P. A.; Atkinson, M. A.; Eisenbarth, G. S. (2011). „Structure-based selection of small molecules to alter allele-specific MHC class II antigen presentation”. Journal of Immunology (Baltimore, Md. : 1950). 187 (11): 5921—5930. PMC 3221928Слободан приступ. PMID 22043012. doi:10.4049/jimmunol.1100746. }-
  5. ^ Knox, C.; Law, V.; Jewison, T.; Liu, P.; Ly, S.; Frolkis, A.; Pon, A.; Banco, K.; Mak, C.; Neveu, V.; Djoumbou, Y.; Eisner, R.; Guo, A. C.; Wishart, D. S. (2011). „DrugBank 3.0: A comprehensive resource for 'omics' research on drugs”. Nucleic Acids Research. 39 (Database issue): D1035—41. PMC 3013709Слободан приступ. PMID 21059682. doi:10.1093/nar/gkq1126. 
  6. ^ Wishart, D. S.; Knox, C.; Guo, A. C.; Cheng, D.; Shrivastava, S.; Tzur, D.; Gautam, B.; Hassanali, M. (2008). „DrugBank: A knowledgebase for drugs, drug actions and drug targets”. Nucleic Acids Research. 36 (Database issue): D901—6. PMC 2238889Слободан приступ. PMID 18048412. doi:10.1093/nar/gkm958. 
  7. ^ Ghose, A.K.; Viswanadhan V.N. & Wendoloski, J.J. (1998). „Prediction of Hydrophobic (Lipophilic) Properties of Small Organic Molecules Using Fragment Methods: An Analysis of AlogP and CLogP Methods”. J. Phys. Chem. A. 102: 3762—3772. doi:10.1021/jp980230o. 
  8. ^ Tetko, I. V.; Tanchuk, V. Y.; Kasheva, T. N.; Villa, A. E. (2001). „Estimation of aqueous solubility of chemical compounds using E-state indices”. Journal of Chemical Information and Computer Sciences. 41 (6): 1488—1493. PMID 11749573. doi:10.1021/ci000392t. 
  9. ^ Ertl, P.; Rohde, B.; Selzer, P. (2000). „Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties”. Journal of Medicinal Chemistry. 43 (20): 3714—3717. PMID 11020286. doi:10.1021/jm000942e. 

Literatura

Spoljašnje veze