Kategorija je v matematiki algebrska struktura, ki jo sestavlja zbirka objektov. Objekti so med seboj povezani tako, da za vsak objekt vemo, kateri je začetni in kateri končni. Te povezave lahko prikažemo ali obravnavamo tudi kot puščice.
Grupam podobne strukture
|
|
Zaprtaα
|
Asociativnost
|
Identiteta
|
Invertibilnost
|
Komutativnost
|
Polgrupoid
|
Nepotrebno |
Zahtevano |
Nepotrebno |
Nepotrebno |
Nepotrebno
|
Mala kategorija
|
Nepotrebno |
Zahtevano |
Zahtevano |
Nepotrebno |
Nepotrebno
|
Grupoid
|
Nepotrebno |
Zahtevano |
Zahtevano |
Zahtevano |
Nepotrebno
|
Magma
|
Zahtevano |
Nepotrebno |
Nepotrebno |
Nepotrebno |
Nepotrebno
|
Kvazigrupa
|
Zahtevano |
Nepotrebno |
Nepotrebno |
Zahtevano |
Nepotrebno
|
Enotska magma
|
Zahtevano |
Nepotrebno |
Zahtevano |
Nepotrebno |
Nepotrebno
|
Zanka
|
Zahtevano |
Nepotrebno |
Zahtevano |
Zahtevano |
Nepotrebno
|
Polgrupa
|
Zahtevano |
Zahtevano |
Nepotrebno |
Nepotrebno |
Nepotrebno
|
Inverzna polgrupa
|
Zahtevano |
Zahtevano |
Nepotrebno |
Zahtevano |
Nepotrebno
|
Monoid
|
Zahtevano |
Zahtevano |
Zahtevano |
Nepotrebno |
Nepotrebno
|
Komutativni monoid
|
Zahtevano |
Zahtevano |
Zahtevano |
Nepotrebno |
Zahtevano
|
Grupa
|
Zahtevano |
Zahtevano |
Zahtevano |
Zahtevano |
Nepotrebno
|
Abelova grupa
|
Zahtevano |
Zahtevano |
Zahtevano |
Zahtevano |
Zahtevano
|
^α Zaprtost, ki se uporablja v veliko virih, je ekvivalentni aksiom kot popolnost, četudi je definiran drugače.
|
Področje matematike, ki obravnava kategorije in preslikave med njimi, se imenuje teorija kategorij.
Definicija
Kategorijo sestavljajo
- razred, oznaka ob(C), objektov
- razred morfizmov z oznako hom(C), imenujemo jih tudi puščice ali preslikave med objekti. Vsakemu morfizmu lahko pripišemo začetni in končni objekt v
- za vsake tri objekte , in se binarna operacija imenuje kompozitum morfizmov. Kompozitum in se zapiše kot
- tako, da velja
- asociativnost, če je in , :potem velja tudi
- in
- identiteta: za vsak objekt :obstoja morfizem , ki ga imenujemo morfizem identitete za tako, da za vsak morfizem velja .
Zgledi
Razred vseh množic z vsemi funkcijami med njimi, ki so običajne kompozicije funkcij tvorijo veliko kategorijo, ki jo označujemo s Set.
Pregled kategorij
Dualna kategorija
Kategorija , ki ima objekte enake kot prvotna kategorija in ima puščice obrnjene se imenuje dualna (nasprotna) kategorija. Označuje se z
Produkt kategorij
Če imamo dve kategoriji in , lahko tvorimo produkt kategorij . Objekti v tej nastali kategoriji so paroma sestavljeni iz po enega objekta iz kategorije in enega objekta iz kategorije . Morfizem nove kategorije je prav tako par sestavljen iz po enega morfizma kategorije in enega morfizma iz kategorije .
Mala kategorija
Kategorija se imenuje mala kategorija, če sta in množici in ne
lastni množici (razred, ki ni množica).
Zunanje povezave