Runge objavil, že pokiaľ sa táto funkcia (nazývaná aj Rungeho funkcia) interpoluje na intervale pomocou ekvidištančných uzlov , teda
polynómomPn(x) stupňa n, výsledná interpolačná krivka v okolí krajov intervalu (teda bodov −1 a 1) silne osciluje (čím narastá chyba interpolácie). Dá sa dokázať, že chyba interpolácie speje s rastúcim stupňom polynómu do nekonečna, teda platí:
Absolútne hodnoty derivácií vyšších rádov môžu byť ešte väčšie. Z toho vyplýva, že sa zvyšuje aj horná hranica chyby interpolácie medzi interpolačnými uzlami.
Zmiernenie problému
Oscilácia interpolačnéhopolynómu môže byť zmiernená, pokiaľ budú mať interpolačné uzly väčšiu hustotu v krajných častiach intervalu. Konkrétne, na intervale (−1,1) možno vybrať uzly s asymptotickou hustotou danou vzorcom . Štandardným príkladom množiny interpolačných uzlov spĺňajúcich túto vlastnosť sú tzv. Čebyšovove uzly, pre ktoré je zaručené, že maximálna chyba sa s rastúcim stupňom polynómu zmenšuje. Rungeho jav je teda dôkazom, že ekvidištančné uzly sú pre polynómy vyššieho stupňa nevhodné. Problém ale môže byť odstránený použitím splajnových kriviek, teda kriviek, ktoré sú po častiach polynomiálne. Pri splajnových krivkách sa dá chyba zmenšiť jednoducho zväčšením počtu deliacich bodov, a teda nie je potrebné zvyšovať stupeň polynómu.
Ďalšou použiteľnou metódou je interpolácia polynómom nižšieho rádu pomocou metódy najmenších štvorcov. Vo všeobecnosti, pri použití m ekvidištančných uzlov pre interpoláciu polynómom stupňa N, ak , tak výsledný interpolačný polynóm má dobré vlastnosti.