Priestorový uhol je časť priestoru vymedzená rotačnou kužeľovouplochou. Každá taká plocha delí priestor na práve dve časti – priestorové uhly. Priestorový uhol sa určuje tak, že sa uvažuje guľová plocha so stredom vo vrchole V a s ľubovoľným polomeromr, ktorej prienik s priestorovým uhlom je vrchlík na guľovej ploche s obsahomA. Veľkosť priestorového uhla potom určuje pomer medzi A a r2, pričom nezávisí na uvažovanej guľovej ploche.[1][2][3][4]
Alternatívnou definíciou priestorového úhlu je zjednotenie všetkých polopriamok so spoločným začiatkom V, kde bod X leží na guľovom vrchlíku so stredom v bode V.[5][6][7]
Špecifickým prípadom priestorového uhla je polpriestor, tj. časť priestoru rozdeleného rovinou.
V astronómii sa okrem steradiánu používa aj staršia jednotka štvorcový stupeň.
Výpočet
Priestorový uhol objektu pozorovaného z určitého bodu je rovný ploche, ktorú zaberá obraz tohto objektu v bodovej projekcii (so stredom v danom bode) na jednotkovú guľu, ktorá má stred v danom bode.
Plný priestorový uhol má hodnotu , priamy uhol polovičnú.
Element priestorového uhla
Ak pozorujeme z určitého bodu s polohovým vektorom element plochy , ktorého polohový vektor je , potom pre element priestorového uhla platí
↑J. FECENKO - Ľ. PINDA. Matematika 1. Bratislava: Vydavateľstvo technickej a ekonomickej literatúry, 2006, [cit. 2006-12-31]. ISBN 80-8078-091-9.
↑LOŠŤÁK, Jiří. Matematika do kapsy. 2. vyd. Olomouc : FIN, 1993. ISBN 80-85572-47-8. S. 123–124.
↑Encyklopedický dům. Encyklopedický slovník. 1. vyd. Praha : Odeon & Encyklopedický dům, 1993. ISBN 80-207-0438-8. S. 1143.
↑Diderot. Všeobecná encyklopedie Diderot v osmi svazcích. 2. nezměněné. vyd. Zväzok 8. T–Ž. Praha : DIDEROT, 2002. ISBN 80-86613-08-9. S. 177.
↑P. HORÁK - Ľ. NIEPEL. Prehľad matematiky. Bratislava: Vydavateľstvo technickej a ekonomickej literatúry, 1982, [cit. 1982-12-31].
↑M. BILLICH - M. TRENKLER. Zbierka úloh z geometrie. Ružomberok: Pedagogická fakulta Katolíckej univerzity, 2013, [cit. 2013-12-31]. ISBN 978-80-561-0058-5.