9000 (number)
9000 (nine thousand ) is the natural number after 8999 and before 9001 .
Selected numbers: 9001–9999
9001 to 9099
9100 to 9199
9200 to 9299
9300 to 9399
9400 to 9499
9500 to 9599
9511 - prime number
9521 - prime number
9533 - prime number
9539 – Sophie Germain prime, super-prime
9551 – first prime followed by as many as 35 consecutive composite numbers
9587 – safe prime, follows 35 consecutive composite numbers
9591 – triangular number
9592 - amount of prime numbers under 100,000
9600 to 9699
9601 – Proth prime
9604 = 98 2
9619 – super-prime
9629 – Sophie Germain prime
9647 – centered heptagonal number
9661 – super-prime, sum of nine consecutive primes (1049 + 1051 + 1061 + 1063 + 1069 + 1087 + 1091 + 1093 + 1097)
9689 – Sophie Germain prime
9699 – nonagonal number
9700 to 9799
9721 – prime of the form 2p-1
9730 – triangular number
9739 – super-prime
9743 – safe prime
9791 – Sophie Germain prime
9800 to 9899
9900 to 9999
9901 – unique prime, sum of seven consecutive primes (1381 + 1399 + 1409 + 1423 + 1427 + 1429 + 1433)[ 13]
9905 – number of compositions of 16 whose run-lengths are either weakly increasing or weakly decreasing[ 14]
9923 – super-prime , probably smallest certainly executable prime number on x86 MS-DOS [ 15]
9949 – sum of nine consecutive primes (1087 + 1091 + 1093 + 1097 + 1103 + 1109 + 1117 + 1123 + 1129)
9973 – super-prime
9999 – Kaprekar number , repdigit
Prime numbers
There are 112 prime numbers between 9000 and 10000:[ 16] [ 17]
9001, 9007, 9011, 9013, 9029, 9041, 9043, 9049, 9059, 9067, 9091, 9103, 9109, 9127, 9133, 9137, 9151, 9157, 9161, 9173, 9181, 9187, 9199, 9203, 9209, 9221, 9227, 9239, 9241, 9257, 9277, 9281, 9283, 9293, 9311, 9319, 9323, 9337, 9341, 9343, 9349, 9371, 9377, 9391, 9397, 9403, 9413, 9419, 9421, 9431, 9433, 9437, 9439, 9461, 9463, 9467, 9473, 9479, 9491, 9497, 9511, 9521, 9533, 9539, 9547, 9551, 9587, 9601, 9613, 9619, 9623, 9629, 9631, 9643, 9649, 9661, 9677, 9679, 9689, 9697, 9719, 9721, 9733, 9739, 9743, 9749, 9767, 9769, 9781, 9787, 9791, 9803, 9811, 9817, 9829, 9833, 9839, 9851, 9857, 9859, 9871, 9883, 9887, 9901, 9907, 9923, 9929, 9931, 9941, 9949, 9967, 9973
References
↑ Sloane, N. J. A. (ed.). "Sequence A005898 (Centered cube numbers: n^3 + (n+1)^3.)" . The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
↑ Sloane, N. J. A. (ed.). "Sequence A002559" . The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
↑ Sloane, N. J. A. (ed.). "Sequence A040017 (Prime 3 followed by unique period primes (the period r of 1/p is not shared with any other prime) of the form A019328(r)/gcd(A019328(r),r) in order (periods r are given in A051627).)" . The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
↑ Sloane, N. J. A. (ed.). "Sequence A002411" . The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
↑ Sloane, N. J. A. (ed.). "Sequence A000292" . The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
↑ Brunner, Amy; Caldwell, Chris K.; Krywaruczenko, Daniel & Lownsdale, Chris (2009). "GENERALIZED SIERPIŃSKI NUMBERS TO BASE b" (PDF) . 数理解析研究所講究録 [Notes from the Institute of Mathematical Analysis (in, New Aspects of Analytic Number Theory)] . 1639 . Kyoto: RIMS : 69–79. hdl :2433/140555 . S2CID 38654417 . {{cite journal }}
: CS1 maint: multiple names: authors list (link )
↑ Sloane, N. J. A. (ed.). "Sequence A005900" . The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
↑ Sloane, N. J. A. (ed.). "Sequence A002407 (Cuban primes: primes which are the difference of two consecutive cubes.)" . The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
↑ Sloane, N. J. A. (ed.). "Sequence A006037 (Weird numbers: abundant (A005101) but not pseudoperfect (A005835).)" . The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
↑ Sloane, N. J. A. (ed.). "Sequence A005479 (Prime Lucas numbers (cf. A000032).)" . The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
↑ Sloane, N. J. A. (ed.). "Sequence A000330" . The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
↑ "Sloane's A000292 : Tetrahedral numbers" . The On-Line Encyclopedia of Integer Sequences . OEIS Foundation. Retrieved 2016-06-14 .
↑ "Sloane's A040017 : Unique period primes" . The On-Line Encyclopedia of Integer Sequences . OEIS Foundation. Retrieved 2016-06-14 .
↑ Sloane, N. J. A. (ed.). "Sequence A332835 (Number of compositions of n whose run-lengths are either weakly increasing or weakly decreasing)" . The On-Line Encyclopedia of Integer Sequences . OEIS Foundation. Retrieved 2022-06-02 .
↑ An Executable Prime Number? , archived from the original on 2010-02-10
↑ Sloane, N. J. A. (ed.). "Sequence A038823 (Number of primes between n*1000 and (n+1)*1000)" . The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
↑ Stein, William A. (10 February 2017). "The Riemann Hypothesis and The Birch and Swinnerton-Dyer Conjecture" . wstein.org . Retrieved 6 February 2021 .
100,000
1,000,000
10,000,000
100,000,000
1,000,000,000