W± i Z0 bozoni su subatomske čestice koje prenose slabu silu. Oni su čestice koje imaju vrlo veliku masu. Vrše interakciju između leptona i kvarkova tj. između svake čestice koja ima naelektrisanje. Imaju veliku ulogu u radioaktivnom raspadu atomskogjezgra. W bozoni imaju pozitivni i negativni električni naboj od 1, respektivno, i jedan prema drugom su antičestice. Z bozon je električno neutralna čestica i sama sebi je antičestica. Sve tri čestice su vrlo kratkog životnog veka sa vremenom poluraspada od 3 • 10−25s. Njihovo otkriće je bilo veliki uspeh za današnji pojam standardnog modela fizike čestica.
W bozoni su imenovani po slaboj (Weak) sili. Fizičar Stiven Vajnberg je dao ime naknadno otkrivenojZ čestici,[3] te je kasnije dao objašnjenje da je ta čestica bila poslednja dodatna čestica neophodna za dokaz modela – W bozoni su već dobili ime – a imala je nulto (zero) naelektrisanje.[4]
Dva W bozona su najbolje poznata kao medijatori apsorpcije neutrino čestica i njihove emisije, gde su njihovi naboji povezani bilo sa raspadom protona u neutrone i obrnuto ili emisijom ili apsorpcijom pozitrona. Oni uvek izazivaju nuklearnu transmutaciju. Z bozoni nisu uključeni ni u apsorpciju ni u emisiju elektrona i pozitrona. Jako su masivni te im je delovanje ograničeno na atomsko jezgro.
Z bozon posreduje u transferu momenta, spina i energije kada se neutrina elastično raštrkaju od materije, nešto što se mora desiti bez proizvodnje ili apsorpcije novih, naelektrisanih čestica. Takvo ponašanje (koje je gotovo uobičajeno kao neelastične neutrino interakcije) je posmatrano u komorama sa mehurićima kada se ozrači zracima neutrina. Kad god se elektron jednostavno pojavi u takvoj komori kao nova slobodna čestica, iznenadno se pokreće sa kinetičkom energijom, i kreće u pravcu neutrina kao očigledan rezultat novog impulsa, a ovo ponašanje se dešava mnogo češće kada je prisutan i zrak neutrina. Može se izvesti zaključak da je to rezultat neutrina koji direktno reaguju sa elektronima. Ovde neutrino jednostavno udara u elektron i rasipa se od njega, prenoseći deo momenta neutrina na elektron. Pošto a.) ni neutrino ni elektroni nisu pod uticajem jakih sila, b.) neutrina su električno neutralna (stoga ne reaguju elektromagnetski) i c.) neverovatno mala masa ovih čestica koje stvaraju gravitacionu silu između njih je zanemariva, takve interakcije se mogu dešavati sako preko slabih sila. Pošto se takav elektron ne stvara iz jezgra i nepromenjen je osim za novi impuls sile prenet od strane neutrina, ova interakcije slabih sila između neutrona i elektrona mora biti posredovana preko bozonske čestice slabe sile bez naelektrisanja. Stoga, ova interakcije zahteva Z bozon.
Osnovna svojstva
Ovi bozoni su među teški elementarnim česticama. Sa masama od Šablon:FormattingError i Šablon:FormattingError, respektivno, W i Z bozoni su skoro 80 puta masivniji protona – teži čak od celokupnih atomagvožđa. Njihove velike mase ograničavaju domet slabe interakcije. Nasuprot tome, foton je nosilac elektromagnetne sile i ima nultu masu, u skladu sa beskonačnim opsegom elektromagnetizma; očekuje se da hipotetični graviton takođe ima nultu masu. (Iako se pretpostavlja da i gluoni imaju nultu masu, opseg sile boje je iz različitih razloga ograničen; pogledajte ograničenje boje.)
Sva tri bozona imaju spin čestices = 1. Emisija W+ ili W− bozona bilo podiže ili smanjuje električni naboj emitujuće čestice za jednu jedinicu, a takođe menja spin za jednu jedinicu. Istovremeno, emisija ili apsorpcija W± bozona može da promeni tip čestice - na primer, promena stranog kvarka u gornji kvark. Neutralni Z bozon ne može da promeni električni naboj bilo koje čestice, niti može da promeni bilo koji od drugih „naboja” (kao što su stranost, barionski broj, čar, itd). Emisija ili apsorpcija Z0 bozona može da promeni samo spin, momenat i energiju druge čestice. (Vidi takođe slabu neutralnu struju.)
Slaba nuklearna sila
W i Z bozoni su čestice nosioci koje posreduju slabu nuklearnu silu, kao što je foton noseća čestica elektromagnetne sile.
Ova reakcija ne uključuje celokupno jezgro kobalta-60, već utiče na samo jedan od njegovih 33 neutrona. Neutron se pretvara u proton, a istovremeno emituje elektron (koji se u ovom kontekstu naziva beta česticom) i elektronski antineutrino:
Ponovo, neutron nije elementarna čestica, već se sastoji od gornjeg kvarka i dva donja kvarka (udd). Zapravo jedan od donjih kvarkova učestvuje u beta raspadu, pretvarajući se u gornji kvark i formirajući proton (uud). Na najosnovnijem nivou, tada slaba sila menja ukus pojedinačnog kvarka:
Z0 bozon je sopstvena antičestica. Stoga su svi njeni kvantni brojevi ukusa i naboji jednaki nuli. Razmena Z bozona između čestica, zvana interakcija neutralne struje, zbog toga ostavlja interagujuće čestice nepromenjenim, osim prenosa spina i/ili momenta.[α 1]Z bozonske interakcije koje uključuju neutrine imaju različite potpise. One omogućavaju jedini poznati mehanizam za elastično raspršivanje neutrina u materiji. Za neutrina je skoro jednako verovatno da će se elastično odbiti (putem Z bozonske razmene) kao i neelastično (putem W bozonske razmene).[α 2] Slabe neutralne struje putem Z bozonske razmene su bile potvrđena ubrzo nakon toga (takođe 1973. godine), u eksperimentu sa neutrinama u komori sa mehurićimaGargamela u CERN-u.[7]
Raspad
W i Z bozoni se raspadaju do fermionskih parova, ali ni Z bozoni, niti Z bozoni imaju dovoljno energije da se raspadnu u vršni kvark najveće mase. Zanemarujući fazne prostorne efekte i korekcije višeg reda, jednostavne procene njihovih frakcija razgranavanja mogu se izračunati iz konstanti uparivanja.
W bozoni
W bozoni se mogu raspasti do leptona i antileptona (pri čemu je jedan od njih naelektrisan, a drugi neutralan)[α 3] ili do kvarka i antikvarka suprotstavljenih tipova. Širina raspada W bozona do para kvark–antikvark je proporcionalna do korespondirajućih kvadratnih elemenata KKM matrice i broja kvarkovih boja, NC = 3. Širine raspada za W+ bozon su proporcionale sa:
Ovde, e+ , μ+ , τ+ označavaju tri ukusa leptona (tačnije, pozitivno naelektrisanih antileptona). ν e, ν μ, ν τ označavaju tri ukusa neutrina. Druge čestice, počevši sa u i d, sve označavaju kvarkove i antikvarkove (faktor NC je primenjen). Razne Vi j vrednosti označavaju korespondirajuće koeficijente KKM matrice.
Jedinstvenost KKM matrice podrazumijeva da je
|Vud|2 + |Vus|2 + |Vub|2 =
|Vcd|2 + |Vcs|2 + |Vcb|2 = 1. Stoga, leptonski odnosi grananja W bozona su aproksimativno B(e+ ν e) = B(μ+ ν μ) = B(τ+ ν τ) = 1⁄9. Hadronskim odnosom grananja dominiraju KKM-dosledna finalna stanja ud i cs. Suma odnosa hadronskog grananja je bila eksperimentalno određena da je Šablon:FormattingError, sa B(l+νl) = Šablon:FormattingError.[8]
Relativne jačine svakog povezivanja mogu se proceniti uzimajući u obzir da stope raspadanja uključuju kvadrat ovih faktora, i sve moguće dijagrame (npr. zbir nad porodicama kvarkova, levih i desnih doprinosa). Ovo je samo procena, jer se u Fermijevoj teoriji razmatraju samo dijagrami na nivou stabla.
↑Prvo predviđanje Z bozona je napravio brazilski fizičar Hoze Lejte Lopez 1958. godine,[5] razvojom jednačine koja je pokazala analogiju slabih nuklearnih interakcija sa elektromagnetizmom. Stiven Vajnberg, Šeldon Li Glašou i Abdus Salam su kasnije iskoristili ove rezultate za razvoj elektroslabe unifikacije 1973. godine.[6]
↑Desnogiri neutrini (i levigiri antineutrini) ne postoje u standardnom modelu. Međutim, neka proširenja standardnog modela omogućavaju njihovo postojanje.