Administrativna podela Španije

Administrativna podela Kraljevine Španije je definisana u VIII glavi ustava Španije iz 1978. godine koja propisuje tri nivoa administrativne podele. Najniži od ta tri nivoa je nivo opštine kojih je 18. decembra 2014. godine bilo sveukupno 8,122. Više opština sačinjava provincije kojih je u Španiji ukupno 50. Provincije su deo španskih autonomnih zajednica kojih je u Španiji ukupno 17, dok gradovi Ceuta i Melilla na afričkoj obali uživaju status autonomnih gradova koji je u istoj ravni sa autonomnim zajednicama.

Autonomne zajednice su osnovane korišćenjem ustavnog prava na autonomiju ili samoupravu koju ustav garantuje (istorijskim) nacionalnostima i regijama Španije koje u isto vreme uslovljava korištenje toga prava nepovredivošću teritorijalnog integriteta zemlje i jedinstva španske nacije. Autonomne zajednice uživaju veoma decentralizovan model teritorijalne organizacije zemlje ali su utemeljene na principu devolucije što Španiju čini unitarnom zemljom, a ne federacijom. Princip devolucije garantuje centralnim institucijama u Madridu primat nad odlukama autonomnih zajednica i centralne institucije zadržavaju puni suverenitet. U nedostatku eksplicitne definicije u Ustavu Kraljevie Španije o federalnoj ili unitarnoj prirodi španske države Ustavni sud Španije odabrao je pristup namerne dvosmislenosti definišući model teritorijalne organizacije kao "državu autonomnih zajednica" čime izbegava implikaciju bilo kojega od dva modela.

Read other articles:

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Mei 2016. Bokura no Ongaku: Our MusicGenreMusikSutradaraSatoru OhnoYuki KurushimaRyosuke HirataPresenterTsuyoshi KusanagiAyako KatoPenggubah lagu temaSatoshi TakebeNegara asalJepangBahasa asliJepangJmlh. musim3Jmlh. episode520ProduksiProduser eksekutifShuichi Kuroki...

 

2014 Big League World SeriesTournament detailsCountryUnited StatesCityEasley, South CarolinaDates23–30 July 2014 (2014-07-23 – 2014-07-30)Teams11Final positionsChampions Clearwater, FloridaRunner-up Guayama, Puerto Rico← 20132015 → The 2014 Big League World Series took place from July 23–30 in Easley, South Carolina, United States. Clearwater, Florida defeated Guayama, Puerto Rico in the championship game. Teams United States International Easle...

 

Strada statale 473di Croce d'AuneLocalizzazioneStato Italia Regioni Veneto DatiClassificazioneStrada statale Inizioex SS 50 presso Lamon FineFeltre Lunghezza22,930[1] km Provvedimento di istituzioneD.M. 1/07/1964 - G.U. 206 del 24/08/1964[2] GestoreTratte ANAS: nessuna (dal 2001 la gestione è passata alla Provincia di Belluno e dal 2002 alla società Veneto Strade) Manuale La ex strada statale 473 di Croce d'Aune (SS 473), ora strada provinciale 473 di Croce d'Aune ...

French naval vessel For other ships with the same name, see Prairial (ship). Frigate Prairial History France NamePrairial NamesakeMonth of Prairial Ordered20 January 1989 BuilderChantiers de l'Atlantique Laid down11 September 1990 Launched16 March 1991 Commissioned20 May 1992 HomeportTahiti StatusActive General characteristics Class and typeFloréal-class frigate Displacement 2,600 t (2,600 long tons) 3,000 t (2,950 long tons) full load Length93.5 m (306 ft 9 in) Beam...

 

Fictional character in Street Fighter Fictional character RufusStreet Fighter characterRufus in Street Fighter IVFirst gameStreet Fighter IV (2008)Designed byDaigo Ikeno[1]Voiced byEN: Christopher Corey Smith[2]JA: Wataru Hatano[2]In-universe informationFighting styleSelf-taught from martial arts films[3]OriginUnited StatesNationalityAmerican Rufus (Japanese: ルーファス, Hepburn: Rūfasu) is a character in Capcom's Street Fighter series of fighting games. ...

 

فهد السويلم معلومات شخصية الاسم الكامل فهد حسين السويلم الميلاد 9 يونيو 1992 (العمر 31 سنة)الخرج مركز اللعب مهاجم ثاني و مدافع الجنسية السعودية  معلومات النادي النادي الحالي الوشم الرقم 16 مسيرة الشباب سنوات فريق النصر السعودي سنوات فريق م. (هـ.) 2014–2017 الخليج 29 (0) 2017–2018 الشعل...

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada April 2016. 5 SrigalaAsalIndonesiaGenreDangdut 5 Srigala adalah sebuah grup vokal dangdut asal Indonesia. Grup vokal tersebut dibentuk dari para mantan personel Tiga Macan dan Trio Macan. Berbeda dengan grupnya terdahulu di Trio Macan dan Tiga Macan, personel 5 Srig...

 

Remedies containing antimony Bottle marked P. Antimonial from the Auckland Museum Antimonials, in pre-modern medicine, were remedies principally containing antimony, used chiefly for emetic purposes. They might also have qualified for cathartic, diaphoretic, or simply alternative uses. Such treatments were considered unparalleled in their strength.[1] Metaphorical usage The following passage illustrates the use of the word antimonial to mean emetic in common (as well as medical) terms...

 

Le contentieux gréco-turc en mer Égée ou conflit de l’Égée fait référence à un ensemble de points de désaccord entre la Grèce et la Turquie[1], toutes deux membres de l'OTAN, à propos de leurs souverainetés respectives sur la zone de la mer Égée, au niveau de leur frontière commune. Ces problèmes ont joué un grand rôle dans l'évolution des relations entre les deux pays depuis les années 1970. Par deux fois depuis cette période, la tension a abouti à des crises proches ...

Questa voce sull'argomento calciatori italiani è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Gino Jacoponi Gino (a destra) con il fratello Bruno Nazionalità  Italia Calcio Ruolo Attaccante Carriera Squadre di club1 1919-1923 Livorno61 (34)1923-1933 Audax Italiano? (?) 1 I due numeri indicano le presenze e le reti segnate, per le sole partite di campionato.Il simbolo → indica un tras...

 

Cet article est une ébauche concernant une localité camerounaise. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Zang-Tabi Administration Pays Cameroun Région Nord-Ouest Département Momo Démographie Population 857 hab. (2005[1]) Géographie Coordonnées 5° 56′ 45″ nord, 9° 54′ 49″ est Altitude 1 788 m Localisation Géolocalisation sur la carte : C...

 

Thomas A. Shannon, Jr. Thomas A. Shannon, Jr. (lahir pada 25 Januari 1958 di Minneapolis, Minnesota) adalah seorang diplomat asal Amerika Serikat. Sebagai diplomat, ia pernah bekerja di berbagai negara, termasuk Venezuela, Guatemala, Afrika Selatan, dan Brasil. Sejak 7 Oktober 2005 ia menjabat sebagai Asisten Menteri Luar Negeri untuk Belahan Bumi Barat, yakni kepala dari Biro Belahan Bumi Barat di Departemen Luar Negeri dari pemerintah federal Amerika Serikat — bertanggung jawab atas pembu...

Person without fixed habitat For other uses, see Nomad (disambiguation). A painting by Vincent van Gogh depicting a caravan of nomadic Roma Part of a series onEconomic, applied, and development anthropology Basic concepts Commodification Barter Debt Finance Embeddedness Reciprocity Redistribution Value Wealth Gift economy Limited good Inalienable possessions Singularization (commodity pathway) Spheres of exchange Social capital Cultural capital Provisioning systems Hunting-gathering Pastorali...

 

Sceaux 行政国 フランス地域圏 (Région) イル=ド=フランス地域圏県 (département) オー=ド=セーヌ県郡 (arrondissement) アントニー郡小郡 (canton) 小郡庁所在地INSEEコード 92071郵便番号 92330市長(任期) フィリップ・ローラン(2008年-2014年)自治体間連合 (fr) メトロポール・デュ・グラン・パリ人口動態人口 19,679人(2007年)人口密度 5466人/km2住民の呼称 Scéens地理座標 北緯48度4...

 

Municipality in Rhineland-Palatinate, GermanyKirchweiler Municipality Coat of armsLocation of Kirchweiler within Vulkaneifel district Kirchweiler Show map of GermanyKirchweiler Show map of Rhineland-PalatinateCoordinates: 50°13′50″N 6°44′44″E / 50.23056°N 6.74556°E / 50.23056; 6.74556CountryGermanyStateRhineland-PalatinateDistrictVulkaneifel Municipal assoc.DaunGovernment • Mayor (2019–24) Reiner Berlingen[1]Area • Tota...

Play by Middleton and Rowley, published 1652 For other uses, see Changeling (disambiguation). Title page of 1653 publicationWritten byThomas Middleton and William RowleyCharactersVermanderoBeatrice-JoannaDiaphantaTomazo de PiracquoAlonzo de PiracquoAlsemeroJasperinoDe FloresAlibiusLollioIsabellaFranciscusAntonioPedroDate premiered1622Place premieredLondon, EnglandOriginal languageEarly Modern EnglishSubjecttreachery, sinGenretragedySetting17th century: Alicante and a madhouse nearby The Chang...

 

It has been suggested that Skateboarding trick be merged into this article. (Discuss) Proposed since April 2024. Action sport on skateboards Skateboarder redirects here. For the magazine, see Skateboarder (magazine). SkateboardingSkater in front of the Barclays Center in Brooklyn, New York (2019)Highest governing bodyWorld SkateCharacteristicsMixed-sexYes, separate competitionsPresenceCountry or regionWorldwideOlympicSince 2020 Skateboarding is an action sport that involves riding a...

 

Mathematical result on infinite trees For other uses, see König's theorem (disambiguation). This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (February 2021) (Learn how and when to remove this message) Kőnig's 1927 publication Kőnig's lemma or Kőnig's infinity lemma is a theorem in graph theory due to the Hungarian mathematician Dénes Kőnig who published i...

Pour les articles homonymes, voir Rüti. Cet article est une ébauche concernant une localité suisse. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Rüti Vue du centre de Rüti. Armoiries Administration Pays Suisse Canton Zurich District Hinwil Nom officiel Rüti (ZH) Maire Anton Melliger NPA 8630 No OFS 0118 Démographie Populationpermanente 12 701 hab. (31 décembre 2022) Densité 1 263&...

 

Directed graph which is also a multigraph In mathematics, especially representation theory, a quiver is another name for a multidigraph; that is, a directed graph where loops and multiple arrows between two vertices are allowed. Quivers are commonly used in representation theory: a representation V of a quiver assigns a vector space V(x) to each vertex x of the quiver and a linear map V(a) to each arrow a. In category theory, a quiver can be understood to be the under...