Для любого числа α α --> {\displaystyle \alpha } :
+ A × × --> ( ∇ ∇ --> × × --> B ) + B × × --> ( ∇ ∇ --> × × --> A ) {\displaystyle +\mathbf {A} \times (\nabla \times \mathbf {B} )+\mathbf {B} \times (\nabla \times \mathbf {A} )}
+ A × × --> r o t B + B × × --> r o t A {\displaystyle +\mathbf {A} \times \mathbf {rot} \mathbf {B} +\mathbf {B} \times \mathbf {rot} \mathbf {A} }
+ ( B ⋅ ⋅ --> ∇ ∇ --> ) A − − --> ( A ⋅ ⋅ --> ∇ ∇ --> ) B {\displaystyle \;+(\mathbf {B} \cdot \nabla )\mathbf {A} -(\mathbf {A} \cdot \nabla )\mathbf {B} }