Факторалгебра — понятие в общей алгебре, определяемое следующим образом.
Пусть — алгебра над полем и — двусторонний идеал в алгебре .
Рассматривая алгебру как кольцо, определим факторкольцо , которое можно превратить в алгебру над , если определить в ней умножение на элементы поля по следующему правилу:
.
Построенная таким образом алгебра называется факторалгеброй алгебры по идеалу .
Пример
Важный пример факторалгебры (в алгебре формальных степенных рядов от нескольких переменных) связан с определением кратности критической точки гладкой функции.
Связанные определения
Каноническим гомоморфизмом для алгебры , связанным с данным идеалом , для которого определена факторалгебра , называется гомоморфизм с ядром , определённый формулой .
Литература
- Винберг Э. Б. Курс алгебры. — 3-е изд.. — М.: Факториал Пресс, 2002. — 544 с. — 3000 экз. — ISBN 5-88688-060-7.