Уравнение Кадомцева — Петвиашвили

Пересекающиеся волны, состоящие из почти кноидальных волновых шлейфов. Фотография сделана с маяка Бален[фр.] в западной точке острова Ре, Франция, в Атлантическом океане. Взаимодействие таких около-солитонов на мелководье может быть смоделировано с помощью уравнения Кадомцева-Петвиашвили.

В математике и физике, уравнение Кадомцева — Петвиашвили (часто сокращённо называемое уравнением КП) — это дифференциальное уравнение в частных производных для описания нелинейного волнового движения. Названное в честь Бориса Борисовича Кадомцева и Владимира Иосифовича Петвиашвили уравнение КП обычно записывается как:

где . Приведённая выше форма показывает, что уравнение КП является обобщением на два пространственных измерения, x и y, одномерного уравнения Кортевега-де Фриза (КдФ). Чтобы иметь физический смысл, направление распространения волны должно быть не слишком далеко от направления x, то есть с медленными изменениями значений в направлении y.

Как и уравнение КдФ, уравнение КП полностью интегрируемо[1][2][3][4][5]. Оно также может быть решено с помощью обратного преобразования рассеяния[англ.], как и нелинейное уравнение Шрёдингера[6].

История

Борис Борисович Кадомцев

Уравнение КП было впервые написано в 1970 году советскими физиками Борисом Кадомцевым (1928—1998) и Владимиром Петвиашвили (1936—1993); оно появилось как естественное обобщение уравнения КдФ (выведенного Кортевегом и де Фризом в 1895 году). Если в уравнении КдФ волны строго одномерны, то в уравнении КП это ограничение ослаблено. Тем не менее, и в уравнении КдФ, и в уравнении КП волны должны двигаться в положительном направлении x.

Связь с физикой

Уравнение КП может быть использовано для моделирования волн большой длины со слабо нелинейными восстанавливающими силами и частотной дисперсией. Если поверхностное натяжение слабо по сравнению с гравитационными силами, используется ; если же поверхностное натяжение сильное, то . Из-за асимметрии в том, как x- и y-переменные входят в уравнение, волны, описываемые уравнением КП, ведут себя по-разному в направлении распространения (x) и поперечном (y) направлении; колебания в y-направлении имеют тенденцию быть более гладкими (иметь малые отклонения).

Уравнение КП может также использоваться для моделирования волн в ферромагнитных средах[7], а также двумерных волновых импульсов в конденсатах Бозе-Эйнштейна.

Ограниченность

Для , типичные осцилляции, зависящие от x, имеют длину волны , что даёт сингулярный предельный режим в виде . Предел называется бездисперсионным[англ.] пределом.[8][9][10]

Если мы также предположим, что решения не зависят от y при , то они будут удовлетворять невязкому уравнению Бюргерса:

Предположим, что амплитуда колебаний решения асимптотически мала —  — в бездисперсионном пределе. Тогда амплитуда удовлетворяет уравнению среднего поля типа Дейви-Стюартсона[англ.].

См. также

Примечания

  1. Абдул-Маджид Вазваз. Multiple-soliton solutions for the KP equation by Hirota’s bilinear method and by the tanh–coth method (англ.) // Applied Mathematics and Computation. — 2007-07. — Vol. 190, iss. 1. — P. 633–640. — doi:10.1016/j.amc.2007.01.056. Архивировано 15 мая 2023 года.
  2. И Ченг, И-шен Ли. The constraint of the Kadomtsev-Petviashvili equation and its special solutions (англ.) // Physics Letters A. — 1991-07. — Vol. 157, iss. 1. — P. 22–26. — doi:10.1016/0375-9601(91)90403-U. Архивировано 1 апреля 2022 года.
  3. Вэнь-Сюй Ма. Lump solutions to the Kadomtsev–Petviashvili equation (англ.) // Physics Letters A. — 2015-09. — Vol. 379, iss. 36. — P. 1975–1978. — doi:10.1016/j.physleta.2015.06.061. Архивировано 17 октября 2022 года.
  4. Юдзи Кодама. Young diagrams and N -soliton solutions of the KP equation // Journal of Physics A: Mathematical and General. — 2004-11-19. — Т. 37, вып. 46. — С. 11169–11190. — ISSN 1361-6447 0305-4470, 1361-6447. — doi:10.1088/0305-4470/37/46/006.
  5. Шу-фанг Дэн, Дэн-юань Чэнь, Да-цзюнь Чжан. The Multisoliton Solutions of the KP Equation with Self-consistent Sources (англ.) // Journal of the Physical Society of Japan. — 2003-09-15. — Vol. 72, iss. 9. — P. 2184–2192. — ISSN 1347-4073 0031-9015, 1347-4073. — doi:10.1143/JPSJ.72.2184. Архивировано 22 октября 2022 года.
  6. Марк Дж. Абловиц, Харви Сегур. Solitons and the Inverse Scattering Transform (англ.). — Society for Industrial and Applied Mathematics, 1981-01. — ISBN 978-0-89871-174-5, 978-1-61197-088-3.
  7. Херв Леблонд. KP lumps in ferromagnets: a three-dimensional KdV Burgers model (англ.) // Journal of Physics A: Mathematical and General. — 2002-11-29. — Vol. 35, iss. 47. — P. 10149–10161. — ISSN 0305-4470. — doi:10.1088/0305-4470/35/47/313. Архивировано 20 октября 2022 года.
  8. Захаров, В. Е. Бесдисперсионный предел интегрируемых систем в 2+1 измерениях // Сингулярные пределы дисперсионных волн. — Бостон : Springer, 1994. — P. 165–174. — ISBN 0-306-44628-6.
  9. Страчан, И. А. (1995). "The Moyal bracket and the dispersionless limit of the KP hierarchy". Journal of Physics A: Mathematical and General (англ.). 28 (7): 1967. arXiv:hep-th/9410048. doi:10.1088/0305-4470/28/7/018.
  10. Такасаки, К.; Такебе, Т. (29.06.1994). "Integrable hierarchies and dispersionless limit". Reviews in Mathematical Physics. 7 (5): 743–808. arXiv:hep-th/9405096. doi:10.1142/S0129055X9500030X. {{cite journal}}: Проверьте значение даты: |date= (справка)Википедия:Обслуживание CS1 (дата и год) (ссылка)

Литература

  • Кадомцев, Б. Б.; Петвиашвили, В. И. (09.02.1970). "Об устойчивости уединённых волн в слабо диспергирующих средах". Докл. АН СССР. 15: 539–541. Bibcode:1970SPhD...15..539K. {{cite journal}}: Проверьте значение даты: |date= (справка)Википедия:Обслуживание CS1 (дата и год) (ссылка). Translation of "Об устойчивости уединённых волн в слабо диспергирующих средах". Докл. АН СССР. 192: 753–756. 09.02.1970. {{cite journal}}: Проверьте значение даты: |date= (справка)
  • Кодама, Ю. KP Solitons and the Grassmannians: combinatorics and geometry of two-dimensional wave patterns : [англ.]. — Springer, 2017. — ISBN 978-981-10-4093-1.
  • Лу, С.-Ю.; Ху, С.-Б. (21.03.1997). "Infinitely many Lax pairs and symmetry constraints of the KP equation". Journal of Mathematical Physics (англ.). 38 (12): 6401–6427. doi:10.1063/1.532219. {{cite journal}}: Проверьте значение даты: |date= (справка)Википедия:Обслуживание CS1 (дата и год) (ссылка)
  • Минцони, А. А.; Смит, Н. Ф. (Ноябрь1996). "Evolution of lump solutions for the KP equation". Wave Motion (англ.). 24 (3): 291–305. doi:10.1016/S0165-2125(96)00023-6. {{cite journal}}: Проверьте значение даты: |date= (справка)Википедия:Обслуживание CS1 (дата и год) (ссылка)
  • Накамура, А. (12.09.1988). "A bilinear N-soliton formula for the KP equation". Journal of the Physical Society of Japan (англ.). 58 (2): 412–422. doi:10.1143/JPSJ.58.412. {{cite journal}}: Проверьте значение даты: |date= and |year= / |date= mismatch (справка)
  • Превиато, Эмма (2001), "KP-equation", in Hazewinkel, Michiel (ed.), Encyclopedia of Mathematics, Springer, ISBN 978-1-55608-010-4
  • Сяо, Т.; Цзэн, Ю. (30.06.2004). "Generalized Darboux transformations for the KP equation with self-consistent sources". Journal of Physics A: Mathematical and General (англ.). 37 (28): 7143. arXiv:nlin/0412070. doi:10.1088/0305-4470/37/28/006. {{cite journal}}: Проверьте значение даты: |date= (справка)Википедия:Обслуживание CS1 (дата и год) (ссылка)

Ссылки

Read other articles:

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Mei 2016. The GallowsSutradaraTravis Cluff, Chris LofingProduserJason Blum, Travis Cluff, Benjamin Forkner, Chris Lofing, Dean SchniderDitulis olehTravis Cluff, Chris LofingPemeranReese Mishler, Pfeifer Brown, Ryan Shoos, Cassidy GiffordPenata musikZach Lemmon...

 

2013 Island GamesHost BermudaTeams22 islandsAthletes1,127Events185 in 15 sportsOpening13 July 2013Closing19 July 2013Opened byElizabeth IIMain venueNational Stadium← 20112015 → The XV Island Games (also known as the 2013 NatWest Island Games for sponsorship reasons)[1] were held in Bermuda from 13 to 19 July 2013.[2] Bermuda was selected to host the Games by default after Prince Edward Island withdrew from the International Island Games Association. ...

 

Nama ini menggunakan cara penamaan Portugis. Nama keluarga pertama atau maternalnya adalah Moura dan nama keluarga kedua atau paternalnya adalah da Silva. Lucas Moura Lucas Moura bersama Paris Saint-GermainInformasi pribadiNama lengkap Lucas Rodrigues Moura da Silva[1]Tanggal lahir 13 Agustus 1992 (umur 31)Tempat lahir São Paulo, BrasilTinggi 1,72 m (5 ft 7+1⁄2 in)[2]Posisi bermain Gelandang sayapInformasi klubKlub saat ini São PauloNomor 7Karie...

For the airport serving Somerset, Kentucky assigned the ICAO code KSME, see Lake Cumberland Regional Airport. Radio station in Greeley, ColoradoKSMEGreeley, ColoradoBroadcast areaFort Collins, Colorado Loveland, Colorado Frequency96.1 MHz (HD Radio)Branding96.1 Kiss FMProgrammingFormatFM/HD1: Top 40 (CHR) HD2: Adult alternative Radio 94.9AffiliationsPremiere NetworksOwnershipOwneriHeartMedia(iHM Licenses, LLC)Sister stationsKBPI, KCOL-AM, KIIX, KOLT-FM, KPAW, KXBG, K235BT, K246CI, K297AKHisto...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Februari 2023. Oh! My Part, YouGenreMusikMisteriRagamRealitasPresenterKyuhyun (Super Junior)Lim Hyun-juNegara asalKorea SelatanBahasa asliKoreaJmlh. musim1Jmlh. episode11 + 1 pilotProduksiLokasi produksiKorea SelatanDurasi90 menitRumah produksiMBCRilis asliJaringanM...

 

Мальтийский скудо* итал. Scudo maltese 30 тари 1798 года Территория обращения    Мальтийский орден Производные и параллельные единицы Дробные Тари (1⁄12)   Грано (1⁄240) Монеты и банкноты в обращении Монеты 1, 2, 3, 5, 10 скудо, 2, 9 тари, 10 грано Банкноты Не выпускаются Введена 1...

Basilika Bunda Maria dari El Valle, El Valle del Espíritu Santo. Ini adalah daftar lengkap Basilika di Venezuela. Basilika adalah gelar yang diberikan kepada beberapa gereja Katolik. Berdasarkan hukum kanonik tidak ada gereja Katolik yang dapat dihormati dengan gelar basilika kecuali mendapatkan hibah apostolik atau berdasarkan kebiasaan dahulu kala.[1] Gelar ini diberikan kepada gereja-gereja besar yang penting sebagai tempat ziarah atau untuk pengabdian tertentu seperti kepada oran...

 

Overview of forests of the Iberian Peninsula This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (June 2012) (Learn how and when to remove this template message) Forest of cork oaks in the south of Portugal (Algarve) Furthest extent of the Iberian woodlands. The woodlands of the Iberian Peninsula are distinct ecosystems on the Iberian Peninsula (which includes Spa...

 

1996 film directed by Tony Scott This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: The Fan 1996 film – news · newspapers · books · scholar · JSTOR (January 2017) (Learn how and when to remove this template message) The FanTheatrical release posterDirected byTony ScottScreenplay byPhoef SuttonBased onThe F...

Синелобый амазон Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:ЗавропсидыКласс:Пт�...

 

Demokrasi sosialis beralih ke halaman ini. Untuk gerakan politik di Irlandia Utara, lihat Demokrasi Sosialis (Irlandia). Sentralisme beralih ke halaman ini, yang bukan mengenai sentrisme. Sentralisme demokratik atau sentralisme demokratis adalah praktik demokrasi Leninis di mana keputusan politik yang dicapai melalui proses pemungutan suara mengikat semua anggota partai. Dalam praktik Dalam pertemuan partai, sebuah mosi (kebijakan baru, amandemen, tujuan, rencana, atau permasalahan partai lai...

 

Breton novelists Mich Beyer and Yann-Fulup Dupuy, with translator Hervé Latimier, 2008 Breton literature may refer to literature in the Breton language (Brezhoneg) or the broader literary tradition of Brittany in the three other main languages of the area, namely, Latin, Gallo and French – all of which have had strong mutual linguistic and cultural influences. Old and Middle Breton literature Breton literature can be categorised into an Old Breton period, from the 5th to 11th century; and ...

この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方)出典検索?: コルク – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2017年4月) コルクを打ち抜いて作った瓶の栓 コルク(木栓、�...

 

11th and 12th-century Spanish farmer and saint SaintIsidore the LaborerSaint Isidore the FarmerConfessorBornc. 1070 or 1082[1]Madrid, Taifa of ToledoDied15 May 1130 (aged 59) or 1172Madrid, Kingdom of CastileVenerated inRoman Catholic ChurchAnglican CommunionAglipayan ChurchBeatified2 May 1619, Rome by Pope Paul VCanonized12 March 1622, Rome by Gregory XVFeast15 May;[2] 25 October; 22 MarchAttributesPortrayed as a peasant holding a sickle and a sheaf of corn, a sick...

 

2016年美國總統選舉 ← 2012 2016年11月8日 2020 → 538個選舉人團席位獲勝需270票民意調查投票率55.7%[1][2] ▲ 0.8 %   获提名人 唐納·川普 希拉莉·克林頓 政党 共和黨 民主党 家鄉州 紐約州 紐約州 竞选搭档 迈克·彭斯 蒂姆·凱恩 选举人票 304[3][4][註 1] 227[5] 胜出州/省 30 + 緬-2 20 + DC 民選得票 62,984,828[6] 65,853,514[6]...

Official cheerleading squad of the Denver Broncos This article needs to be updated. Please help update this article to reflect recent events or newly available information. (April 2020) This article may need to be rewritten to comply with Wikipedia's quality standards. You can help. The talk page may contain suggestions. (April 2020) Denver Broncos CheerleadersFormation1993; 31 years ago (1993)Membership 28DirectorShawna PetersAffiliationsDenver BroncosWebsitedenverbroncos.c...

 

United States historic placeRex HotelU.S. National Register of Historic Places Location300 W. 66th, Gallup, New MexicoCoordinates35°31′38″N 108°44′37″W / 35.52722°N 108.74361°W / 35.52722; -108.74361 (Rex Hotel)Arealess than one acreBuilt1910 (1910)Architectural styleStone CommercialMPSDowntown Gallup MRANRHP reference No.87002215[1]Added to NRHPJanuary 14, 1988 The Rex Hotel in Gallup, New Mexico, at 300 W. Sixty-sixth,...

 

  لمعانٍ أخرى، طالع الحرب الأهلية العراقية (توضيح). الحرب الأهلية العراقية جزء من حرب الخليج الثالثة و صراعات الجماعات المسلحة العراقية   تحت سيطرة الشيعة   تحت سيطرة السنة    تحت سيطرة الأكراد   تحت سيطرة السريان   تحت سيطرة اليزيديين   تح...

دانيال إيلينسون معلومات شخصية الميلاد 9 أغسطس 1985 (39 سنة)  كيب تاون  الطول 1.85 م (6 قدم 1 بوصة) مركز اللعب مهاجم الجنسية نيوزيلندا  معلومات النادي النادي الحالي Macarthur Rams الرقم 8 مسيرة الشباب سنوات فريق 2001–2003 FC Viktorsberg المسيرة الاحترافية1 سنوات فريق م. (هـ.) 2004–2006 واي...

 

Coppa del Presidente degli Emirati Arabi Uniti 2004-2005 Competizione Coppa del Presidente degli Emirati Arabi Uniti Sport Calcio Edizione 22ª Organizzatore UAEFA Date 20 dicembre 2004 - 16 giugno 2005 Luogo  Emirati Arabi Uniti Partecipanti 16 Risultati Vincitore  Al-Ain(3º titolo) Secondo  Al-Wahda Statistiche Incontri disputati 27 Gol segnati 109 (4,04 per incontro) Manuale La Coppa del Presidente degli Emirati Arabi Uniti 2004-2005 è la ventunesima edizione della c...