Теоре́ма о кинети́ческой эне́ргии систе́мы — одна из общих теорем динамики[1], является следствием законов Ньютона. Связывает кинетическую энергиюмеханической системы с работойсил, действующих на тела, составляющие систему. В качестве системы, о которой идёт речь, может выступать любая механическая система, состоящая из любых тел[2][3].
Кинетической энергией системы называют сумму кинетических энергий всех тел, входящих в систему. Для определённой таким образом величины справедливо утверждение[2][3]:
Изменение кинетической энергии системы равно работе всех внутренних и внешних сил, действующих на тела системы.
Рассмотрим систему материальных точек с массами, скоростями и кинетическими энергиями .
Для малого изменения кинетической энергии (дифференциала), происходящего в течение некоторого малого промежутка времени будет выполняться
Учитывая, что представляет собой ускорениеi-ой точки , а — перемещение той же точки за время , полученное выражение можно записать в виде:
Используя второй закон Ньютона и обозначая равнодействующую всех сил, действующих на точку, как , получаем
а затем в соответствии с определением работы
Суммирование всех уравнений такого вида, записанных для каждой из материальных точек, приводит к формуле для изменения полной кинетической энергии системы:
Данное равенство выражает утверждение теоремы об изменении кинетической энергии системы в дифференциальном виде.
Проинтегрировав обе части полученного равенства по произвольно взятому промежутку времени между некоторыми и , получим выражение теоремы об изменении кинетической энергии в интегральной форме:
где и — значения кинетической энергии системы в моменты времени и соответственно.
Отдельный интерес представляют системы, в которых на тела действуют потенциальные силы[5]. Для таких сил вводится понятие потенциальной энергии, изменение которой в случае одной материальной точки по определению удовлетворяет соотношению:
где и — значения потенциальной энергии точки в начальном и конечном состояниях соответственно, а — работа потенциальной силы, совершаемая при перемещении точки из начального состояния в конечное.
Изменение потенциальной энергии системы получается в результате суммирования изменений энергий всех тел системы:
Если все внутренние и внешние силы, действующие на тела системы, потенциальны[6], то
Подставляя полученное выражение в уравнение теоремы о кинетической энергии, получим:
или, что то же самое
Иначе говоря, получается, что для полной механической энергии системы выполняется
Таким образом, можно сделать вывод:
Если на тела системы действуют только потенциальные силы, то полная механическая энергия системы сохраняется.
Данное утверждение и составляет содержание закона сохранения механической энергии, являющегося следствием теоремы о кинетической энергии и одновременно частным случаем общего физического закона сохранения энергии[2][3].
В тех случаях, когда предметом изучения является лишь движение системы, а реакции связей не представляют интереса, пользуются формулировкой теоремы для системы с идеальными стационарными связями, которая выводится с учетом принципа Даламбера-Лагранжа.
Теорема об изменении кинетической энергии системы с идеальными стационарными связями утверждает[7]:
Дифференциал кинетической энергии системы с идеальными стационарными связями равен сумме элементарных работ на действительных перемещениях действующих внешних и внутренних сил
Верхние значки в этих выражениях обозначают: — активная (то есть не являющаяся реакцией связей) сила, (от англ.external) и (от англ.internal) — соответственно, внешняя и внутренняя сила.
↑Жирнов Н. И. Классическая механика. — Серия: учебное пособие для студентов физико-математических факультетов педагогических институтов. — М., Просвещение, 1980. — Тираж 28 000 экз. — с. 262
↑Напомним, что силы называют потенциальными, если работа, совершаемая ими при перемещении материальной точки, определяется только начальным и конечным положениями точки и не зависит от выбора траектории.