Теорема Степанова

Теорема Степанова — обобщение теоремы Радемахера о дифференцируемости Липшицевой функции.

Предположим функция , определена на открытом множестве евклидова пространства, и

для всех . Тогда дифференцируема почти везде в .

Доказана Степановым[1].


Литература

  • Федерер Г., Геометрическая теория меры, 1987, с. 236, (теорема 3.1.9)

Примечания

  1. H. Stepanoff: Über totale Differenzierbaгkeit. Math. Ann. 90 (1923), 318—320.