Слово и дело. Любимые песни Васи-Совесть

Слово и дело. Любимые песни Васи-Совесть
Обложка альбома Александра Ф. Скляра «Слово и дело. Любимые песни Васи-Совесть» ()
Студийный альбом
Александра Ф. Скляра
Дата выпуска 2013
Жанры русский рок, городской романс, русский шансон
Длительность 47:53
Продюсер Александр Белоносов
Страна  Россия
Язык песен русский
Лейбл Soyuz Music
Профессиональные рецензии

«Слово и дело. Любимые песни Васи-Совесть» — студийный альбом российского рок-исполнителя Александра Ф. Скляра, выпущенный в 2013 году. Пластинка была специально подготовлена к 55-летию артиста и как выразился сам музыкант представляет собой сборник «вещей, которые любит слушать Вася-Совесть, которые живут с ним на протяжении всего пути». Основу альбому послужили старые песни с новой аранжировкой. Также присутствуют 3 новые композиции[1].

Список композиций

НазваниеАвтор(ы)Длительность
1.«Пилоты»Александр Ф. Скляр3:26
2.«Таня-душа»сл. — Ю. Мамлеев, муз. — народная2:49
3.«Не реви!»Александр Ф. Скляр4:30
4.«Секреты»Александр Ф. Скляр3:30
5.«Топот диких коней»Евгений Головин4:47
6.«Солдат»Александр Ф. Скляр4:07
7.«Охота на волков»Владимир Высоцкий2:57
8.«Чёрное знамя»Александр Ф. Скляр3:57
9.«Честь по чести»Александр Ф. Скляр3:08
10.«Не для меня»сл. — А. Молчанов, муз. — Н. Девитте5:27
11.«Вася-Совесть»Александр Ф. Скляр4:35
12.«Не бросай!»Елена Юданова4:40

Участники записи

Примечания

Ссылки

Read other articles:

Nama ini menggunakan cara penamaan Spanyol: nama keluarga pertama atau paternalnya adalah Muriel dan nama keluarga kedua atau maternalnya adalah Fruto. Luis Muriel Informasi pribadiNama lengkap Luis Fernando Muriel Fruto[1]Tanggal lahir 16 April 1991 (umur 32)Tempat lahir Santo Tomás, KolombiaTinggi 179 cm (5 ft 10 in)[2]Posisi bermain PenyerangInformasi klubKlub saat ini AtalantaNomor 9Karier junior2001–2008 Atlético Junior2008–2009 Deportivo Ca...

 

Animal feed additive This article needs to be updated. Please help update this article to reflect recent events or newly available information. (June 2021) Ractopamine Names Preferred IUPAC name 4-(1-Hydroxy-2-{[4-(4-hydroxyphenyl)butan-2-yl]amino}ethyl)phenol Identifiers CAS Number 97825-25-7 N 3D model (JSmol) Interactive image ChEBI CHEBI:82644 N ChEMBL ChEMBL509336 Y ChemSpider 50604 Y MeSH Ractopamine PubChem CID 56052 UNII 57370OZ3P1 Y CompTox Dashboard (EPA) DT...

 

American rapper and singer (born 1997) Coi LerayLeray performing in 2021Background informationBorn (1997-05-11) May 11, 1997 (age 26)Boston, Massachusetts, U.S.OriginHackensack, New Jersey, U.S.Genres Hip hop[1] pop[2] Occupation(s) Rapper singer songwriter Years active2011–presentLabels1801RepublicUptown ParentBenzino (father) Websitecoileray.com Musical artist Coi Leray Collins[a] (born May 11, 1997) is an American rapper and singer from Hackensack, New Jersey...

Dragon Ball ZCover dari soundtrack kompilasi pertama Dragon Ball Z yang menampilkan Goku (kiri) dan banyak tokoh lain dari seri iniドラゴンボールZ(Doragon Bōru Zetto)GenreKomedi, Seni bela diri, Sains fiksi AnimeSutradaraDaisuke Nishio (episode 1–199)ProduserKōzō MorishitaKenji ShimizuKoji KanedaSkenarioTakao KoyamaMusikShunsuke KikuchiStudioToei AnimationPelisensiAUS Madman EntertainmentNA Funimation EntertainmentUK Manga EntertainmentTayang 26 April 1989 – 31 Januari 1996 Ani...

 

Richard RiderNova, disegnato da Adi Granov UniversoUniverso Marvel Lingua orig.Inglese AutoriMarv Wolfman John Buscema EditoreMarvel Comics 1ª app.settembre 1976 1ª app. inNova (vol. 1[1]) n. 1 Editore it.Editoriale Corno 1ª app. it.marzo 1978 1ª app. it. inGli Eterni n. 1 Voci orig.Jason Marsden (Super Hero Squad Show, Marvel Super Hero Squad: The Infinity Gauntlet) Troy Baker (Ultimate Marvel vs. Capcom 3, Marvel Heroes) Benjamin Diskin (Marvel vs. Capcom: ...

 

この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方)出典検索?: コルク – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2017年4月) コルクを打ち抜いて作った瓶の栓 コルク(木栓、�...

Japanese natural gas utility company You can help expand this article with text translated from the corresponding article in Japanese. Click [show] for important translation instructions. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-translated text into the English Wikipedia. Consider adding a topic to this t...

 

هذه المقالة تحتاج للمزيد من الوصلات للمقالات الأخرى للمساعدة في ترابط مقالات الموسوعة. فضلًا ساعد في تحسين هذه المقالة بإضافة وصلات إلى المقالات المتعلقة بها الموجودة في النص الحالي. (أبريل 2024)Learn how and when to remove this message المجلس التنفيذي لإمارة عجمانتعديل - تعديل مصدري - تعديل و...

 

The Mahim Causeway The Mahim Causeway is a vital link road connecting Mumbai City district/South Mumbai (Churchgate to Mahim) with its Northern and Western Suburbs (Bandra to Dahisar). The causeway links the neighbourhoods of Mahim to the south with Bandra to the north. The Mahim Causeway was built between 1841 and 1846 to connect the island of Salsette with Mahim. The swampy area between the two islands made travel dangerous and thus a need for a causeway arose. The British East India Compa...

Ethnic group Albanians in BelgiumShqiptarët në BelgjikëTotal populationca. 50,000 - 60,000Regions with significant populationsWidespreadLanguagesAlbanian (Tosk, Gheg, Arbëresh dialects) (native) Dutch, French, German, English (working languages) Italian, Greek, Macedonian, Serbo-Croatian, Turkish (additional languages)ReligionIslam, Christianity, Irreligious Albanians in Belgium (Albanian: Shqiptarët në Belgjikë; Dutch: Albanezen in België; French: Albanais en Belgique; German: Albane...

 

Sheet music publisher This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article contains content that is written like an advertisement. Please help improve it by removing promotional content and inappropriate external links, and by adding encyclopedic content written from a neutral point of view. (July 2012) (Learn how and when to remove this message) This article needs additional cita...

 

Volkerak highlighted in cyan. The Volkerak is a body of water in the Netherlands. It is part of the Rhine–Meuse–Scheldt delta, and is situated between the island Goeree-Overflakkee to the north-west and the Dutch mainland to the south and east. The western part of the Volkerak is also called Krammer. Tributaries of the Volkerak are the Dintel and Steenbergse Vliet. Before 1987, it was a tidal river open to the North Sea, but it was closed off as part of the Delta Works; it is now a fresh ...

This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: 2004 United States House of Representatives elections in New Mexico – news · newspapers · books · scholar · JSTOR (December 2021) 2004 United States House of Representatives elections in New Mexico ← 2002 November 2, 2004 2006 →...

 

Artikel ini perlu diwikifikasi agar memenuhi standar kualitas Wikipedia. Anda dapat memberikan bantuan berupa penambahan pranala dalam, atau dengan merapikan tata letak dari artikel ini. Untuk keterangan lebih lanjut, klik [tampil] di bagian kanan. Mengganti markah HTML dengan markah wiki bila dimungkinkan. Tambahkan pranala wiki. Bila dirasa perlu, buatlah pautan ke artikel wiki lainnya dengan cara menambahkan [[ dan ]] pada kata yang bersangkutan (lihat WP:LINK untuk keterangan lebih lanjut...

 

Jakob IV. Jakob IV. (englisch James IV, schottisch-gälisch Seumas a Ceithir (IV); * 17. März 1473 vermutlich im Stirling Castle; † 9. September 1513 bei Branxton, Northumberland) war von 1488 bis zu seinem Tod König von Schottland. Er wurde als ältester Sohn von Jakob III. und dessen Ehefrau Margarethe von Dänemark geboren. Er wurde später als der fähigste König gepriesen, den Schottland jemals hatte. Unter seiner Herrschaft erholte sich das Land von den ständig...

Hottest of the four temperate seasons Not to be confused with Sumer. Summers redirects here. For other uses, see Summer (disambiguation) and Summers (disambiguation). This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Summer – news · newspapers · books · scholar · JSTOR (November 2023) (Learn how and when to r...

 

Church in Rome, ItalySanta Maria in VallicellaChurch of Saint Mary in the Little Valley[1]Chiesa Nuova, Santa Maria in Puteo AlboChiesa di Santa Maria in VallicellaFacadeClick on the map for a fullscreen view41°53′55″N 12°28′9″E / 41.89861°N 12.46917°E / 41.89861; 12.46917LocationVia di Governo Vecchio 134, RomeCountryItalyLanguage(s)ItalianDenominationCatholicTraditionLatin ChurchReligious instituteOratoriansWebsitevallicella.orgHistoryStatustitula...

 

ليمبيزا دي سانجري (تلفظ بالإسبانية: ‎/limˈpjeθa ðe ˈsaŋɡɾe/‏)، limpeza de sangue (برتغالية، Galician) أو neteja de sang (النطق الكتالاني : [nəˈtɛʒə ðə ˈsaŋ]، حرفيًا «نظافة الدم» و«نقاء الدم»، لعبت دورًا مهمًا في التاريخ الحديث لشبه الجزيرة الإيبيرية. تشير إلى أولئك الذين كانوا يعتبرون «مسي�...

Wife of the heir apparent to the French throne This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Dauphine of France – news · newspapers · books · scholar · JSTOR (January 2021) (Learn how and when to remove this message) The dauphine of France (/ˈdɔːfiːn, dɔːˈfiːn/, also US: /ˈdoʊfiːn, doʊˈfiːn/,...

 

Rank theorem redirects here. For the rank theorem of multivariable calculus, see constant rank theorem. In linear algebra, relation between 3 dimensions Rank–nullity theorem The rank–nullity theorem is a theorem in linear algebra, which asserts: the number of columns of a matrix M is the sum of the rank of M and the nullity of M; and the dimension of the domain of a linear transformation f is the sum of the rank of f (the dimension of the image of f) and the nullity of f (the dimension of...