Cегнетоэлектрический металл или металлический сегнетоэлектрик[1][2] — это металл, который обладает электрическим дипольным моментом. Его малый объём обладает поляризацией. Существование таких металлов контринтуитивно, потому что свободный электрический заряд в металле может свободно перетекать и должен нейтрализовать поляризацию, однако существование таких материалов экспериментально установленный факт. Впервые сегнетоэлектрический эффект в металле наблюдался в монокристаллах купратных сверхпроводников YBa2Cu3O7-δ,.[3][4] Поляризация наблюдалась вдоль одной оси (001) с помощью измерений пироэлектрического эффекта, и было показано, что знак поляризации обратим, а его величина контролируется с помощью электрического поля.[5] При этом поляризация исчезала в сверхпроводящем состоянии.[6] Соответствующие искажения решетки считались результатом смещения ионов кислорода, вызванного легированными зарядами, нарушающими симметрию центра инверсии.[7][8] Этот эффект используют для изготовления пироэлектрических детекторов для космических приложений, из-за большого пироэлектрического коэффициента и низкого внутреннего сопротивления.[9] Другим семейством веществ, которое можно отнести к металлическим сегнетоэлектрикам, — никелатные перовскиты. Например, сегнетоэлектрические свойства, демонстрирует металлический никелат лантана, LaNiO 3 .[10][11] В тонкой пленке LaNiO 3, выращенной на поверхности кристалла (111) алюмината лантана (LaAlO3), наблюдались сегнетоэлектрический эффект и проводимость при комнатной температуре. Однако удельное сопротивление этой системы возрастает с понижением температуры, следовательно, он не полностью соответствует определению металла. Также при росте толщины плёнки до 3 или 4 элементарных ячеек (1-2 нм) на кристаллической грани (100) LaAlO 3, LaNiO 3 проявляет сегнетоэлектрикие свойства как проводник или изолятор в зависимости от в зависимости от полярности поверхности. Осмат лития[12] LiOsO 3 также демонстрирует сегнетоэлектрический переход при охлаждении ниже 140 К. Точечная группа симметрии кристалла меняется с R3c на R3c, теряя центральную симметрию.[13][14] При комнатной температуре и ниже осмат лития — электрический проводник в монокристаллической, поликристаллической или порошковой форме, а сегнетоэлектрическая форма появляется только при температуре ниже 140 К. При температуре выше 140 К материал ведет себя как обычный металл.[15]
Собственная металличность и сегнетоэлектричество наблюдались при комнатной температуре в массивном монокристаллическом дителлуриде вольфрама (WTe2); дихалькогенид переходного металла (TMDC). Он обладает бистабильностью с возможностью электрически переключаться между состояниями с различной спонтанной поляризацией, что указывает на наличие сегнетоэлектричесткого эффекта.[16] Сосуществование металлической проводимости и переключаемой электрической поляризации в WTe 2, в этом слоистом материале, наблюдалось в пределе малой толщины двух- и трехслойной плёнке.[17] Расчеты показывают, что это происходит из-за вертикального переноса заряда между слоями, которые переключается посредством межслоевого скольжения.[18]
П. У. Андерсон и Э. И. Блаунт предсказали существование сегнетоэлектрического металла в 1965 году[13] Они основывались на экспериментальных результатах сверхпроводящего и сегнетоэлектрического переходов в титанате бария. В этом материале атомы не перемещаются далеко от своих мест в жлементарной ячейке, и происходит лишь небольшая несимметричная деформация кристалла, из кубической в тетрагональную. Такой переход назвали мартенситным. Они также предложили исследовать натриево-вольфрамовую бронзу и сплав InTl, поскольку поняли, что свободные электроны в металле нейтрализуют эффект поляризации на глобальном уровне, но локально электроны проводимости не сильно влияют на поперечные оптические фононы или локальное электрическое поле, присущее сегнетоэлектричеству.[19]
↑Benedek, Nicole A. (2016). "'Ferroelectric' metals reexamined: fundamental mechanisms and design considerations for new materials". Journal of Materials Chemistry C. 4 (18): 4000—4015. arXiv:1511.06187. doi:10.1039/C5TC03856A.
↑Mihailovic, Dragan (1991). "Ferroelectricity in YBa2Cu3O7−δ and La2CuO4+δ single crystals". Physica C: Superconductivity. 185—189. doi:10.1016/0921-4534(91)91614-A.
↑Mihailovic, Dragan (1990). "Pyroelectric and piezoelectric effects in single crystals of YBa2Cu3O7-d". Solid State Communications. 75. doi:10.1016/0038-1098(90)90904-P.
↑Yang, Qing (2018-12-20). "Origin of Two-Dimensional Vertical Ferroelectricity in WTe2 Bilayer and Multilayer". The Journal of Physical Chemistry Letters. 9 (24): 7160—7164. doi:10.1021/acs.jpclett.8b03654. PMID30540485.