1. Пусть выполняется неравенство:
Домножим обе части этого неравенства на и проинтегрируем, используя подстановку :
отсюда
так как , вычитаемое в последних скобках положительно. Поэтому, разделив неравенство на , получим:
Прибавив к обеим частям интеграл , получим
Учитывая, что , при
Поскольку с возрастанием и интеграл возрастает, то для него существует конечный предел при :
Так как этот интеграл сходится, то согласно интегральному признаку Коши — Маклорена ряд также сходится.
2. Пусть теперь имеет место неравенство:
Домножив обе части этого неравенства на и проинтегрировав, используя в левой части подстановку , получим:
Прибавим к обеим частям интеграл :
Поскольку , то . Определим теперь последовательность следующим образом:
Используя эту последовательность последнее неравенство можно записать в виде:
Суммируем этот интеграл по :
то есть этот интеграл неограничен при . Поэтому:
Так как этот интеграл расходится, то согласно интегральному признаку Коши — Маклорена ряд также расходится.
■