Односторонняя функция

Нерешённые проблемы информатики: ''Существуют ли односторонние функции ?''

Односторонняя функция — математическая функция, которая легко вычисляется для любого входного значения, но трудно найти аргумент по заданному значению функции. Здесь «легко» и «трудно» должны пониматься с точки зрения теории сложности вычислений. Разрыв между сложностью прямого и обратного преобразований определяет криптографическую эффективность односторонней функции. Неинъективность функции не является достаточным условием для того, чтобы называть её односторонней. Односторонние функции могут называться также трудно обратимыми или необратимыми.

Ни для одной функции, используемой как односторонняя на практике, не доказано, что она истинно односторонняя (то есть, что не существует быстрого алгоритма решения обратной задачи). Такое доказательство докажет, что классы сложности P и NP не равны, попутно разрешив ряд вопросов теоретической информатики. Современная асимметричная криптография основывается на предположении, что односторонние функции всё-таки существуют.

Односторонние функции являются фундаментальными инструментами криптографии, персональной идентификации, аутентификации и других областей защиты данных. Хотя существование таких функций по-прежнему остаётся недоказанной гипотезой, существует несколько претендентов, выдержавших десятилетия пристального изучения. Многие из них являются неотъемлемой частью большинства телекоммуникационных систем, а также систем электронной коммерции и интернет-банкинга по всему миру.

Определение

Пусть  — множество всех двоичных строк длины n. Функция является односторонней функцией, если она эффективно вычисляется за полиномиальное время на детерминированной машине Тьюринга, но не существует полиномиальной вероятностной машины Тьюринга, которая обращает эту функцию с более чем экспоненциально малой вероятностью. То есть для любой вероятностной полиномиальной машины , для любого полинома и достаточно большого выполняется

где строка выбирается случайным образом на множестве в соответствии с равномерным законом распределения. Время работы машины ограничено полиномом от длины искомого прообраза[1].

Существование

Ни для одной функции, используемой как односторонняя на практике, не доказано, что она истинно односторонняя (то есть, что не существует быстрого алгоритма решения обратной задачи). Если f является односторонней функцией, то нахождение обратной функции является трудновычислимой (по определению), но легкопроверяемой задачей (путём вычисления f на ней). Таким образом, из существования односторонней функции следует, что P ≠ NP. Однако, неизвестно, влечёт ли за собой P ≠ NP существование односторонних функций.

Существование односторонних функций повлечёт за собой существование многих других полезных криптографических объектов, в том числе:

Использование

Говорят, что односторонняя функция сохраняет длину, если битовая длина значения функции равна битовой длине аргумента. Такие функции используются, например, в псевдослучайных генераторах. Если битовая длина значения односторонней функции постоянна при любой длине аргумента, то она называется хеш-функцией. Так, хеш-функция используется для хранения паролей или создания электронной подписи[1].

Трудность задачи построения криптографических схем из односторонних функций можно пояснить на следующем примере. Пусть  — односторонняя функция и нам требуется построить криптосистему с секретным ключом. В такой криптосистеме имеется только один ключ — секретный, который известен и отправителю, и получателю шифрованного сообщения. Алгоритмы шифрования и дешифрования оба зависят от этого секретного ключа и таковы, что для любого открытого текста . Ясно, что если криптограмму сообщения вычислять как , то противник, перехвативший , может вычислить лишь с пренебрежимо малой вероятностью. Но во-первых, непонятно, каким образом сможет восстановить сообщение из криптограммы законный получатель? Во-вторых, из того, что функция односторонняя следует лишь, что противник не может вычислить все сообщение целиком. А это — весьма низкий уровень стойкости. Желательно, чтобы противник, знающий криптограмму , не мог вычислить ни одного бита открытого текста.

Для решения первой задачи были придуманы односторонние функции с потайным входом. Это специальный тип односторонней функции для которой легко вычислить по заданному , но трудно по известному вычислить . Однако существует некоторая дополнительная секретная информация , позволяющая при знании и легко вычислить .

Ещё одним примером использования односторонних функций в криптографических схемах является следующая схема аутентификации:

Абонент вырабатывает следующую последовательность сообщений: и т. д. , где  — односторонняя функция. Затем передаётся по секретному каналу (или при встрече) абоненту . Когда необходимо подтвердить свою личность, он передаёт по открытому каналу сообщение . проверяет: . В следующий раз передаст , и проверит: и т. д. Перехват сообщений на i-ом этапе в открытом канале ничего не даст злоумышленнику, так как он не сможет получить соответствующее значение , чтобы в следующий раз идентифицировать себя как абонента . Такие схемы применяются для идентификации «свой/чужой»[2].

Доказательство выполнения работы

Для защиты компьютерных систем от злоупотребления услугами запрашивающей стороне предлагается решить задачу, на поиск решения которой тратится достаточно много времени, а результат легко и быстро проверяется обслуживающей стороной. Примером такой защиты от спама может служить система Hashcash[3], которая запрашивает хеш частичной инверсии у отправляющей электронную почту стороне.

В системе «Биткойн» требуется, чтобы получаемая хеш-сумма была меньше специального параметра. Для поиска нужной хеш-суммы требуется её многократный пересчёт с перебором произвольных значений дополнительного параметра. На поиск одной хеш-суммы все компьютеры системы тратят примерно 10 минут, что регулирует скорость эмиссии новых биткойнов. Для проверки требуется лишь однократное вычисление хеша.

Стойкость криптографических схем

Существование односторонних функций является необходимым условием для стойкости многих типов криптографических схем. В некоторых случаях этот факт устанавливается достаточно просто. Рассмотрим функцию такую, что . Она вычислима с помощью алгоритма за полиномиальное время. Покажем, что если не односторонняя функция, то криптосистема нестойкая. Предположим, что существует полиномиальный вероятностный алгоритм , который инвертирует с вероятностью по крайней мере для некоторого полинома . Здесь  — длина ключа . Атакующий может подать на вход алгоритму ключ и получить с указанной вероятностью некоторое значение из прообраза. Далее злоумышленник подаёт на вход алгоритма и получает пару ключей . Хотя не обязательно совпадает с , тем не менее, по определению криптосистемы для любого открытого текста . Поскольку найден с вероятностью по крайней мере , которая в криптографии не считается пренебрежимо малой, криптосистема нестойкая.

Из всего сказанного следует, что предположение о существовании односторонних функций является самым слабым криптографическим предположением, которое может оказаться достаточным для доказательства существования стойких криптографических схем различных типов. На выяснение того, является ли это условие и в самом деле достаточным, направлены значительные усилия специалистов.

На настоящий момент[когда?] доказано, что существование односторонних функций является необходимым и достаточным условием для существования стойких криптосистем с секретным ключом, а также стойких криптографических протоколов нескольких типов, включая протоколы электронной подписи. С другой стороны, имеется результат Импальяццо и Рудиха, который является достаточно сильным аргументом в пользу того, что для некоторых типов криптографических схем (включая протоколы распределения ключей типа Диффи-Хеллмана) требуются более сильные предположения, чем предположение о существовании односторонних функций[4].

Кандидаты в односторонние функции

Далее описаны несколько претендентов на односторонние функции. На данный момент не известно, являются ли они действительно односторонними, но обширные исследования пока не смогли найти эффективный обратный алгоритм к каждой из них.

Умножение и факторизация

Функция принимает на вход два простых числа и в двоичном представлении и возвращает их произведение . Эта функция может быть вычислена за время порядка , где  — общая длина (количество двоичных чисел) входных данных. Построение обратной функции требует нахождения множителей заданного целого числа . Определение множителей является очень трудоёмкой вычислительной операцией. Для оценки сложности алгоритма, раскладывающего целое число на простые множители, часто используют функцию:

Если алгоритм имеет сложность , то ему требуется полиномиальное время на работу (размер задачи на входе, число бит числа, ). При сложности ему потребуется уже экспоненциальное время. Таким образом скорость роста функции при лежит между полиномиальной и экспоненциальной. Поэтому про алгоритмы с такой сложностью говорят, что они требуют суб-экспоненциального времени[5].

Существует несколько методов факторизации числа с простыми и . Некоторые из них:

  • Пробное деление — в этом алгоритме для всех простых чисел , не превосходящих , проверяется условие . Такой алгоритм близок к полному перебору и имеет экспоненциальную сложность .
  • Метод эллиптической кривой хорошо работает, если один из простых множителей не превосходит . Его сложность оценивается как .
  • Квадратичное решето, вероятно, наиболее быстрый способ разложения чисел, лежащих между и . Его сложность — .
  • Квадратичное решето в числовом поле. В настоящее время это наиболее успешный метод для чисел, насчитывающих 100 и более десятичных знаков. С его помощью можно разлагать на множители числа до , а его сложность оценивается как [5].

Функция может быть обобщена на диапазон полупростых чисел. Заметим, что не сможет быть односторонней для произвольных , так как их произведение с вероятностью ¾ имеет множитель 2.

Заметим, что факторизация с полиномиальной сложностью возможна на квантовом компьютере с помощью алгоритма Шора (класс BQP).

Возведение в квадрат и извлечение квадратного корня по модулю

Функция принимает два целых числа: и , где  — произведение двух простых и . На выходе — остаток от деления на . Нахождение обратной функции требует вычисления квадратного корня по модулю , то есть нахождения если известно и то, что . Можно показать, что последняя задача вычислительно так же сложна, как и разложение на множители.

Криптосистема Рабина основывается на предположении, что функция Рабина является односторонней.

Дискретное экспоненцирование и логарифмирование

Функция дискретного экспоненцирования принимает в качестве аргументов простое число и целое в интервале от до и возвращает остаток от деления некоторого на . Эта функция может быть легко вычислена за время , где  — количество битов в . Обращение этой функции требует вычисления дискретного логарифма по модулю . Пусть  — конечная абелева группа, например мультипликативная группа конечного поля или эллиптическая кривая над конечным полем. Задача вычисления дискретных логарифмов состоит в определении целого числа , которое при данных удовлетворяет соотношению

Для некоторых групп такая задача довольно проста. Например, если  — группа целых чисел по модулю по сложению. Для других групп, однако, эта задача более сложная. Например, в мультипликативной группе конечного поля, наилучший из известных алгоритмов, решающий задачу дискретного логарифмирования, — это метод квадратичного решета в числовом поле. Сложность вычисления дискретных логарифмов в этом случае оценивается как . Схема Эль-Гамаля основывается на этой задаче[6].

Для групп, подобных эллиптической кривой, задача дискретного логарифмирования ещё более трудна. Наилучший из доступных на сегодняшний день методов, вычисляющих дискретные логарифмы над общей эллиптической кривой над полем , называется ρ-метод Полларда. Его сложность . Это экспоненциальный алгоритм, поэтому криптосистемы, основанные на эллиптической кривой, как правило, работают с малым ключом, около 160 бит. В то время как системы, отталкивающиеся от разложения на множители или вычисления дискретных логарифмов в конечных полях, используют ключи в 1024 бита[6].

С задачей дискретного логарифмирования так же связано несколько близких задач. Пусть дана конечная абелева группа :

  • Задача Диффи-Хеллмана, которая состоит в следующем: даны элементы . Требуется вычислить .
  • Задача выбора Диффи-Хеллмана. Дано: . Требуется определить, является ли произведением и .

Можно показать, что задача выбора Диффи-Хеллмана не сложнее задачи Диффи-Хеллмана, а задача Диффи-Хеллмана не сложнее задачи вычисления дискретных логарифмов[6].

Криптографические хеш-функции

Существует множество криптографических хеш-функций (например, SHA-256), которые быстро вычисляются. Некоторые из более простых версий не проходили сложный анализ, но самые сильные версии продолжают предлагать быстрые практические решения для односторонних вычислений. Большая часть теоретической поддержки этих функций направлена на срыв некоторых из ранее проведённых успешных атак.

Другие претенденты

Другие претенденты в односторонние функции основываются на сложности декодирования случайных линейных кодов и иных задачах.

См. также

Примечания

  1. 1 2 Птицын, 2002, с. 38—39.
  2. Схема аутентификации.
  3. Hashcash — A Denial of Service Counter-Measure (2002)
  4. Russell Impagliazzo, Steven Rudich. Private Information Retrieval Does Not Imply One-way Permutations. Архивировано 23 сентября 2015 года.
  5. 1 2 Смарт, 2005, с. 185—186.
  6. 1 2 3 Смарт, 2005, с. 187—188.

Ссылки

Read other articles:

David Vaughan Vaughan berseragamNottingham Forest pada 2016Informasi pribadiNama lengkap David Owen VaughanTanggal lahir 18 Februari 1983 (umur 41)Tempat lahir Conwy, WalesTinggi 1,70 m (5 ft 7 in)[1]Posisi bermain GelandangInformasi klubKlub saat ini Crewe Alexandra U-18 (Manajer)[2]Karier junior1997–2000 Crewe AlexandraKarier senior*Tahun Tim Tampil (Gol)2000–2007 Crewe Alexandra 185 (18)2007–2008 Real Sociedad 9 (1)2008–2011 Blackpool 109 (4)201...

 

 

Bali International Convention CenterSuasana di depan Bali International Convention Center pada acara Konferensi Perubahan Iklim PBB 2007LokasiNusa Dua, Kabupaten Badung, Bali, IndonesiaTheatre seating2,500 (Ballroom)[1]Ruang tertutupSitus webbaliconvention.com Bali International Convention Center atau BICC adalah pusat konvensi yang terletak di Nusa Dua, Badung, Bali, Indonesia. Sejak peresmiannya, banyak konferensi penting nasional dan internasional, pameran, olahraga dalam ruangan d...

 

 

For the 2017 remake, see Duniyadari (2017 film). This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Duniyadari – news · newspapers · books · scholar · JSTOR (July 2013) (Learn how and when to remove this template message) 2013 Indian filmDuniyadariDirected bySanjay JadhavScreenplay byChinmay MandlekarStory byDu...

6 SenseAlbum studio karya DygtaDirilis10 Mei 2012GenrePopLabelNagaswaraKronologi Dygta 5 Hati Untuk Cinta (2009)5 Hati Untuk Cinta2009 6 Sense (2012) Lucky Seven (2015)Lucky Seven2015 6 Sense adalah sebuah album musik keenam dari grup musik asal Bandung, Dygta. Dirilis pada tahun 2012 dengan lagu Ku Merindukanmu sebagai lagu utama di album ini. Sementara lagu Cinta Tanpa Kata belum diketahui apakah di release atau unreleased video klipnya. Daftar lagu Satu Satunya Ku Merindukanmu Sheila S...

 

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada November 2022. Thar Pike KaungNama lainBurmaသားပိုက်ကောင် SutradaraSteel (Dwe Myittar)SkenarioNay Soe ThaeCeritaZan Thazin ThwayPemeran Htun Htun Soe Myat Thuzar Shwe Thamee SinematograferMano V. NarayananPerusahaanproduksiArr Mhan Fi...

 

 

Vice President of MexicoVicepresidente de MéxicoCoat of arms of Mexico (1824–1918)José María Pino Suárez Last office holderFormationOctober 10, 1824First holderNicolás BravoFinal holderJosé María Pino SuárezAbolishedFebruary 5, 1917 (permanently vacant since February 19, 1913)Superseded bySecretary of the Interior The office of the vice president of Mexico was first created by the Constitution of 1824, then it was abolished in 1836 by the Seven Constitutional Laws, then briefly res...

العلاقات الغرينادية الغيانية غرينادا غيانا   غرينادا   غيانا تعديل مصدري - تعديل   العلاقات الغرينادية الغيانية هي العلاقات الثنائية التي تجمع بين غرينادا وغيانا.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه المقارنة...

 

 

Carlo SavinaCarlo Savina bermain gitar (1954)Lahir(1919-08-02)2 Agustus 1919Turin, Piedmont, ItaliaMeninggal23 Juni 2002(2002-06-23) (umur 82)Roma, ItaliaKebangsaanItaliaNama lainHerbert Buckman, Charles Hanger, James MunshinPekerjaanKomponisDikenal atasAmarcord, The Godfather, The Bear Carlo Savina (2 Agustus 1919 – 23 Juni 2002) adalah seorang komponis dan konduktor asal Italia yang mengkomposisikan, mengaransemen, dan mengkonduksikan musik untuk perfilman-dan sec...

 

 

Синелобый амазон Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:ЗавропсидыКласс:Пт�...

Федеральное агентство по делам Содружества Независимых Государств, соотечественников, проживающих за рубежом, и по международному гуманитарному сотрудничествусокращённо: Россотрудничество Общая информация Страна  Россия Юрисдикция Россия Дата создания 6 сентября...

 

 

本條目存在以下問題,請協助改善本條目或在討論頁針對議題發表看法。 此條目需要編修,以確保文法、用詞、语气、格式、標點等使用恰当。 (2015年7月23日)請按照校對指引,幫助编辑這個條目。(幫助、討論) 此條目內容疑欠准确,有待查證。 (2015年7月23日)請在讨论页討論問題所在及加以改善,若此條目仍有爭議及准确度欠佳,會被提出存廢討論。 此條目之中立性有�...

 

 

Distintivo di pilotaDistintivo di pilota Terzo ReichTipoDistintivo di specialità StatusCessato CapoHermann Göring IstituzioneBerlino, 12 agosto 1935 CessazioneBerlino, 1945 Concessa aMilitari tedeschi DiametroAltezza della corona: 53 mm - Larghezza: 42 mm.La larghezza dell'apertura alare dell'aquila misura circa 65 mm Manuale Il distintivo di pilota (in tedesco Flugzeugführerabzeichen) fu una decorazione militare del Terzo Reich, concessa ai militari tedeschi in possesso di brevetto di pil...

El movimiento de los animales de Aristóteles Idioma Griego antiguo Título original Περὶ ζῴων κινήσεως [editar datos en Wikidata] Aristóteles El movimiento de los animales (en griego: Περὶ ζῴων κινήσεως; en latín: De Motu Animalium ) es uno de los principales obras de Aristóteles sobre biología. Establece los principios generales de la locomoción animal. La obra ha sido considerada como apócrifa por numerosos sabios, en gran parte a ca...

 

 

One Sweet DaySingel oleh Mariah Carey dan Boyz II Mendari album DaydreamArti judulSuatu Saat NantiSisi-BOpen ArmsDirilis14 November 1995 (1995-11-14)Format 7 inci 12 inci CD maxi kaset DirekamFebruari 1995GenreR&BDurasi4:42LabelColumbiaPencipta Mariah Carey Walter Afanasieff Nathan Morris Michael McCary Shawn Stockman Wanya Morris Produser Mariah Carey Walter Afanasieff Kronologi singel Mariah Carey Fantasy (1995) One Sweet Day (1995) Open Arms (1995) Kronologi singel Boyz ...

 

 

Lomer Gouin Fonctions Lieutenant-gouverneur du Québec 10 janvier 1929 – 28 mars 1929(2 mois et 18 jours) Monarque George V Premier ministre Louis-Alexandre Taschereau Prédécesseur Narcisse Pérodeau Successeur Henry George Carroll Premier ministre du Québec 23 mars 1905 – 8 juillet 1920(15 ans, 3 mois et 15 jours) Lieutenant-gouverneur Louis-Amable JettéCharles-Alphonse-Pantaléon PelletierFrançois LangelierPierre-Évariste LeblancCharles Fitzpatrick Légis...

Halaman ini berisi artikel tentang film. Untuk karakter, lihat Maleficent. MaleficentLogo filmSutradaraRobert StrombergProduserJoe RothSkenarioLinda WoolvertonBerdasarkanLa Belle au bois dormant oleh Charles PerraultLittle Briar Rose oleh The Brothers GrimmPemeranAngelina JolieBrenton ThwaitesSharlto CopleyElle FanningSam RileyImelda StauntonJuno TempleLesley ManvilleNaratorJanet McTeerPenata musikJames Newton HowardSinematograferDean SemlerPenyuntingChris LebenzonRichard PearsonPerusah...

 

 

Växjö Ciudad VäxjöLocalización de Växjö en Suecia meridional VäxjöLocalización de Växjö en KronobergCoordenadas 56°53′21″N 14°48′10″E / 56.889029924861, 14.802795326212Entidad Ciudad • País  Suecia • Län Kronoberg • Kommun Växjö • Landskap SmålandSubdivisiones 11 tätortSuperficie   • Total 30.28 km²Altitud   • Media 167 m s. n. m.Población (2020)   • Total 71 282 h...

 

 

Världscupen i alpin skidåkning 1981/1982 Segrare Totalt Erika Hess,  Schweiz (damer) Phil Mahre,  USA (herrar) <<< 1980/1981 1982/1983 >>> Världscupen i alpin skidåkning 1981/1982 inleddes den 3 december 1981 i Val d'Isère och avslutades 27 mars 1982 i Montgenèvre. Vinnare av totala världscupen blev Erika Hess och Phil Mahre. Tävlingskalender Herrar Störtlopp Datum Ort Etta Tvåa Trea 6 december 1981 Val d’Isère (Frankrike) Franz Klammer (Österrike) P...

СелоНижняя Кутузовкаукр. Нижня Кутузовка, крымскотат. Aşağı Şuma 44°42′30″ с. ш. 34°22′50″ в. д.HGЯO Страна  Россия/ Украина[1] Регион Республика Крым[2]/Автономная Республика Крым[3] Район Городской округ Алушта[2]/Алуштинский горсовет[3] История ...

 

 

Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Cet article adopte un point de vue régional ou culturel particulier et nécessite une internationalisation (mai 2016). Merci de l'améliorer ou d'en discuter sur sa page de discussion ! Vous pouvez préciser les sections à internationaliser en utilisant {{section à internationaliser}}. Ne doit pas être confondu avec Stade de neige ou Domaine nordique. La station de sports d'hiver de San Carlos de Bariloc...