Обратная теорема или обратная импликация — обратное утверждение к данной теореме в котором условие исходной теоремы (прямого утверждения) поставлено заключением, а заключение — условием.[1]
Обратной к обратной теореме является исходная (прямая) теорема.
Справедливость обеих взаимно обратных теорем означает, что выполнения условий любой из них необходимо и достаточно для справедливости заключения.[1]
Каждая теорема может быть выражена в форме импликации , в которой посылка является условием теоремы, а следствие является заключением теоремы. Тогда теорема, записанная в виде является обратной к ней[2].
Часто используется более общее определение обратной теоремы: если является прямой теоремой, то обратной называется не только теорема , но и теоремы , .[3]
Если условие и/или заключение теоремы являются сложными суждениями, то обратная теорема допускает множество не равносильных друг другу формулировок.
Например, если условием теоремы является , а заключением :
, то для обратной теоремы существует пять форм:[4]
Вообще говоря, обратная теорема может не быть истинной, даже если прямая теорема верна.
Так, теорема «вертикальные углы равны» (иначе: «если углы вертикальные, то они равны»), как известно, верна. Но обратное к ней утверждение «если углы равны, то они вертикальные», вообще говоря, неверно.
Даже если обратное утверждение истинно, то его доказательство может быть гораздо сложнее доказательства прямого.
Например, теорема о четырёх вершинах была доказана в 1912 году, а её обратная только в 1998 году.