Неорганическая химия

Неоргани́ческая хи́мия — раздел химии, связанный с изучением строения, реакционной способности и свойств всех химических элементов и их неорганических соединений. Эта область охватывает все химические соединения, за исключением органических веществ (класса соединений, в которые входит углерод, за исключением нескольких простейших соединений, обычно относящихся к неорганическим[1]). Различия между органическими и неорганическими соединениями, содержащими углерод, являются по некоторым представлениям произвольными[2]. Неорганическая химия изучает химические элементы и образуемые ими простые и сложные вещества (кроме органических соединений). Обеспечивает создание материалов новейшей техники. Число известных на 2013 г. неорганических веществ приближается к 500 тысячам.

Теоретическим фундаментом неорганической химии является периодический закон и основанная на нём периодическая система Д. И. Менделеева. Важнейшая задача неорганической химии состоит в разработке и научном обосновании способов создания новых материалов с нужными для современной техники свойствами.

История определения

Исторически название неорганическая химия происходит от представления о части химии, которая занимается исследованием элементов, соединений, а также реакций веществ, которые не образованы живыми существами. Однако со времён синтеза мочевины из неорганического соединения цианата аммония (NH4OCN), который совершил в 1828 году выдающийся немецкий химик Фридрих Вёлер, стираются границы между веществами неживой и живой природы. Так, живые существа производят много неорганических веществ. С другой стороны, почти все органические соединения можно синтезировать в лаборатории. Однако деление на различные области химии является актуальным и необходимым, как и раньше, поскольку механизмы реакций, структура веществ в неорганической и органической химии различаются. Это позволяет проще систематизировать методы и способы исследования в каждой из отраслей.

Классификация химических элементов

Периоди́ческая систе́ма хими́ческих элеме́нтов (таблица Менделе́ева) — классификация химических элементов, устанавливающая зависимость различных свойств элементов от заряда атомного ядра. Система является графическим выражением периодического закона, установленного русским химиком Д. И. Менделеевым в 1869 году. Её первоначальный вариант был разработан Д. И. Менделеевым в 1869—1871 годах и устанавливал зависимость свойств элементов от их атомного веса (по-современному, от атомной массы). Всего предложено несколько сотен[3] вариантов изображения периодической системы (аналитических кривых, таблиц, геометрических фигур и так далее). В современном варианте системы предполагается сведение элементов в двумерную таблицу, в которой каждый столбец (группа) определяет основные физико-химические свойства, а строки представляют собой периоды, в определённой мере подобные друг другу.

Простые вещества

Состоят из атомов одного химического элемента (являются формой его существования в свободном состоянии). В зависимости от того, какова химическая связь между атомами, все простые вещества в неорганической химии разделяются на две основные группы: металлы и неметаллы. Для первых характерна, соответственно, металлическая связь, для вторых — ковалентная. Стоит, впрочем, заметить, что радикальных и существенных отличий друг от друга вышеупомянутые простые вещества не имеют. Также выделяются две примыкающие к ним группы — металлоподобных и неметаллоподобных веществ. Существует явление аллотропии, которое состоит в возможности образования нескольких типов простых веществ из атомов одного и того же элемента; каждый из таких типов называется аллотропной модификацией. Если данное явление обусловлено различным молекулярным составом, то оно определяется как аллотропия состава; если способом размещения молекул и атомов в кристаллах — то как аллотропия формы.

Металлы

Мета́ллы (от лат. metallum — шахта, рудник) — группа элементов, обладающая характерными металлическими свойствами, такими как высокие тепло- и электропроводность, положительный температурный коэффициент сопротивления, высокая пластичность и металлический блеск. Из 118[4] химических элементов, открытых на данный момент (из них не все официально признаны), к металлам относят:

Таким образом, к металлам относится 96 элементов из всех открытых.

В силу особенностей металлической атомной связи (а именно — ненасыщаемости и ненаправленности) металлы характеризуются максимально плотными координационными решётками. Наиболее типичны для них кубическая гранецентрированная, кубическая объёмно центрированная и гексагональная кристаллические решётки. Кроме того, из-за энергетической близости решёток у многих металлов проявляется полиморфизм.

Неметаллы

Немета́ллы — химические элементы с типично неметаллическими свойствами, которые занимают правый верхний угол Периодической системы. В молекулярной форме в виде простых веществ в природе встречаются азот, кислород и сера. Чаще неметаллы находятся в химически связанном виде: это вода, минералы, горные породы, различные силикаты, фосфаты, бораты. По распространённости в земной коре неметаллы существенно различаются. Наиболее распространёнными являются кислород, кремний, водород; наиболее редкими — мышьяк, селен, иод. Характерной особенностью неметаллов является большее (по сравнению с металлами) число электронов на внешнем энергетическом уровне их атомов. Это определяет их бо́льшую способность к присоединению дополнительных электронов и проявлению более высокой окислительной активности, чем у металлов. К неметаллам также относят водород и гелий.

Сложные вещества

Количественная классификация

По количеству элементов, входящих в состав вещества, различаются бинарные, трёхэлементные соединения и т. п.

Бинарные соединения

Бинарными называются соединения, состоящие из атомов двух элементов. Их классификация также производится на основании типа химической связи; выделяют соединения ионные, ковалентные, металлические, а также характеризующиеся смешанным типом связи. Их химические свойства варьируются в зависимости от химической природы конкретных элементов: соединения, в состав которых входят металлические элементы, характеризуются основными свойствами, в то время как соединения неметаллических элементов проявляют кислотные свойства.

Трёхэлементные соединения

Трёхэлементные — наиболее простые по составу соединения, которые образуются при взаимодействии, как правило, существенно отличающихся друг от друга по химической природе бинарных соединений. С точки зрения химической связи их подразделяют на ионные, ковалентные и ионно-ковалентные. В зависимости от устойчивости ионов их внешней сферы варьируется устойчивость анионных комплексов, которая, в свою очередь, влияет на свойства соединения и степень его подобия бинарному.

Если же взаимодействующие соединения мало отличаются друг от друга по химической природе, то в результате возникают особые разновидности веществ: смешанные соединения, твёрдые растворы и эвтектики. Первые из перечисленных — это полимеры, являющиеся продуктом взаимодействия соединений элементов, одинаково склонных к комплексообразованию (к примеру, оксид алюминия и оксид магния), вторые образуются в том случае, если электроположительные элементы могут образовывать схожие структурные единицы (то есть не имеющие принципиальных различий по части строения, размера и устойчивости), а третьи представляют собой результат взаимодействия соединений таких элементов, которые близки друг другу химически, но отличаются по строению или размеру атомов. В последнем случае химического взаимодействия, строго говоря, не происходит вообще — возникает механический конгломерат кристаллов.

Качественная классификация

Большую часть сложных неорганических веществ (то есть состоящих из двух и более химических элементов) можно разделить на следующие группы:

Оксиды

Окси́д (о́кисел, о́кись) — бинарное соединение химического элемента с кислородом в степени окисления −2, в котором сам кислород связан только с менее электроотрицательным элементом. Химический элемент кислород по электроотрицательности второй после фтора, поэтому к оксидам относятся почти все соединения химических элементов с кислородом. К исключениям относятся, например, дифторид кислорода OF2. Оксиды — весьма распространённый тип соединений, содержащихся в земной коре и во Вселенной вообще. Примерами таких соединений являются ржавчина, вода, песок, углекислый газ, ряд красителей. Оксидами называется класс минералов, представляющих собой соединения металла с кислородом.

В зависимости от химических свойств различают:

Соли

Со́ли — класс химических соединений, к которому относятся вещества, состоящие из катионов металла (или катионов аммония ; известны соли фосфония или гидроксония ) и анионов кислотного остатка. Типы солей:

  • Средние (нормальные) соли — все атомы водорода в молекулах кислоты замещены на атомы металла. Пример: , .
  • Кислые соли — атомы водорода в кислоте замещены атомами металла частично. Они получаются при нейтрализации основания избытком кислоты. Пример: , .
  • Осно́вные соли — гидроксогруппы основания (OH) частично замещены кислотными остатками. Пример: .
  • Двойные соли — в их составе присутствует два различных катиона, получаются кристаллизацией из смешанного раствора солей с разными катионами, но одинаковыми анионами. Пример: .
  • Смешанные соли — в их составе присутствует два различных аниона. Пример: .
  • Гидратные соли (кристаллогидраты) — в их состав входят молекулы кристаллизационной воды. Пример: .
  • Комплексные соли — в их состав входит комплексный катион или комплексный анион. Пример: , .

Особую группу составляют соли органических кислот, свойства которых значительно отличаются от свойств минеральных солей. Некоторые из них можно отнести к особенному классу органических солей, так называемых ионных жидкостей или по-другому «жидких солей», органических солей с температурой плавления ниже 100 °C.

Основания

Основа́ния — класс химических соединений:

Кислоты

Кисло́ты — сложные вещества, в состав которых обычно входят атомы водорода, способные замещаться на атомы металлов, и кислотный остаток. Водные растворы кислот имеют кислый вкус, обладают раздражающим действием, способны менять окраску индикаторов, отличаются рядом общих химических свойств.

Кроме подразделения на кислоты Льюиса и кислоты Брёнстеда, последние принято классифицировать по различным формальным признакам:

  • По содержанию атомов кислорода[5]: бескислородные (HCl, H2S, HCN); кислородсодержащие (HNO3, H2SO4).
  • По количеству кислых атомов водорода[5]: одноосновные (HNO3); двухосновные (H2SeO4); трёхосновные (H3PO4, H3BO3); многоосновные.
  • По силе: сильные — диссоциируют практически полностью, константы диссоциации больше 1⋅10−3 (HNO3); слабые — константа диссоциации меньше 1⋅10−3 (уксусная кислота Kд= 1,7⋅10−5).
  • По устойчивости: устойчивые (H2SO4); неустойчивые (H2CO3).
  • По принадлежности к классам химических соединений: неорганические (HBr); органические (HCOOH, CH3COOH);
  • По летучести: летучие (HNO3, H2S); нелетучие (H2SO4) ;
  • По растворимости в воде: растворимые (H2SO4); нерастворимые (H2SiO3);
  • По содержанию атомов металлов: металлосодержащие (HMnO4, H2TiO3); не металлосодержащие (HNO3, HCN).

Прочее

Также можно выделить следующие группы неорганических веществ: карбиды, нитриды, гидриды, интерметаллиды и другие, которые не укладываются в приведённую выше классификацию (более подробно см. Неорганическое вещество).

Карбиды

Карби́ды — соединения металлов и неметаллов с углеродом. Традиционно к карбидам относят соединения, в которых углерод имеет большую электроотрицательность, чем второй элемент (таким образом из карбидов исключаются такие соединения углерода, как оксиды, галогениды и тому подобные). Карбиды — тугоплавкие твёрдые вещества: карбиды бора и кремния4С и SiC), титана, вольфрама, циркония (TiC, WC и ZrC соответственно) обладают высокой твёрдостью, жаростойкостью, химической инертностью.

Карбиды подразделяются на следующие виды: солеобразные (CaC2, Al4C3); ковалентные (карборунд SiC); металлоподобные (имеющие нестехиометрический состав, например, цементит (Fe3C)).

Нитриды

Нитри́ды — соединения азота с менее электроотрицательными элементами, например, с металлами (AlN;TiNx;Na3N;Ca3N2;Zn3N2; и т. д.) и с рядом неметаллов (NH3, BN, Si3N4). Соединения азота с металлами чаще всего являются тугоплавкими и устойчивыми при высоких температурах веществами, например, эльбор. Нитридные покрытия придают изделиям твёрдость, коррозионную стойкость; находят применение в энергетике, космической технике.

Гидриды

Гидри́ды — соединения водорода с металлами и с имеющими меньшую электроотрицательность, чем водород, неметаллами. Иногда к гидридам причисляют соединения всех элементов с водородом[источник не указан 1655 дней]. Наиболее распространёнными являются бинарные гидриды. Они делятся на три типа в зависимости от характера связи в соединении: ионные (водород и щелочной или щёлочноземельный металл), металлические (гидриды переходных металлов или редкоземельных элементов) и ковалентные (молекулярные) (гидриды неметаллов или Al, Be, Sn, Sb, As, Te, Ge)[6].

Интерметаллиды

Металлические соединения, или интерметаллиды — один из четырёх базовых вариантов взаимодействия между металлами (остальные три — полное отсутствие какого-либо влияния, взаимное растворение в жидком состоянии и образование эвтектики в твёрдом, а также формирование как жидких, так и твёрдых растворов любого состава). В отличие от, например, твёрдых растворов интерметаллиды характеризуются сложной кристаллической структурой, непохожей на структуру исходных веществ; аналогичным образом у них могут появляться физические или химические особенности, не свойственные их составляющим в чистом виде. В целом для интерметаллидов характерно широкое разнообразие кристаллических структур и типов химической связи, что, в свою очередь, является причиной обширного спектра их возможных физических и химических свойств.

Интерметаллиды, как и другие химические соединения, имеют фиксированное соотношение между компонентами. Интерметаллиды обладают, как правило, высокой твёрдостью и высокой химической стойкостью. Очень часто интерметаллиды имеют более высокую температуру плавления, чем исходные металлы. Почти все интерметаллиды хрупки, так как связь между атомами в решётке становится ковалентной или ионной (например, в ауриде цезия CsAu), а не металлической. Некоторые из них имеют полупроводниковые свойства, причём, чем ближе к стехиометрии соотношение элементов, тем выше электрическое сопротивление. Никелид титана, известный под маркой «нитинол», обладает памятью формы — после закалки изделие может быть деформировано механически, но примет исходную форму при небольшом нагреве.

Нестехиометрические соединения

Вплоть до начала XX века аксиоматическим считалось положение о постоянстве состава тех или иных веществ, впервые высказанное и сформулированное веком ранее. Рассматриваемое утверждение было аналогичным образом поименовано как закон постоянства состава, а соответствующее свойство веществ — как стехиометричность. Впоследствии проведённые учёным Н. С. Курнаковым исследования показали, что существуют также и соединения переменного состава, то есть нестехиометрические, и при этом они характеризуются довольно высокой степенью распространённости в природе. Н. С. Курнаков предложил также именовать соединения постоянного состава дальтонидами, а переменного — бертоллидами.

В той или иной степени переменный состав характерен для тех веществ, у которых наблюдается либо атомное, либо ионное строение. В таком случае в кристалле могут возникать различного рода дефекты — либо недостаток атомов в определённых узлах, либо их избыток в промежутках между узлами. К примеру, явная нестехиометричность характерна для оксида и сульфата железа (II). Существуют определённые пределы, внутри которых отклонения от стехиометрического состава считаются допустимыми; соответствующий диапазон называется областью гомогенности. В свою очередь, вещества с молекулярным строением имеют постоянный состав; следует, впрочем, заметить, что вплоть до 95 % неорганических веществ такого строения не имеют и в силу этого являются нестехиометрическими. Длительное преобладание представлений о постоянстве состава объясняется тем, что часто изменения оказываются недостаточно существенными для их обнаружения в ходе химического анализа.

См. также

Примечания

  1. К неорганическим соединениям углерода обычно относят некоторые соли (карбонаты, цианиды, цианаты, тиоцианаты) и соответствующие им кислоты, а также оксиды углерода, карбонилы металлов и карбиды.
  2. Spencer L. Seager, Michael R. Slabaugh. Chemistry for Today: general, organic, and biochemistry. // Thomson Brooks/Cole, 2004. — Р. 342. ISBN 0-534-39969-X
  3. В книге В. М. Потапов, Г. Н. Хомченко «Химия», М. 1982 (стр. 26) утверждается, что их более 400.
  4. Международный химический союз признал 112-й химический элемент. Дата обращения: 21 марта 2012. Архивировано 6 февраля 2012 года.
  5. 1 2 Рудзитис Г. Е., Фельдман Ф. Г. Химия. Неорганическая химия. 8 класс. — 15-е изд. — М.: Просвещение, 2011. — С. 101. — ISBN 978-5-09-025532-5.
  6. Гидриды / А. И. Жиров // Большая российская энциклопедия : [в 35 т.] / гл. ред. Ю. С. Осипов. — М. : Большая российская энциклопедия, 2004—2017.

Литература

  • Капустинский А. Ф. Очерки по истории неорганической и физической химии в России. М.-Л., 1949
  • Жамбулова М. Ш. Развитие неорганической химии (Историко-методологический аспект). Алма-Ата, 1981.- 187 с.
  • Неорганическое материаловедение в СССР. Под ред. И. В. Тананаева — Киев: Наукова думка, 1983. — 720 с.
  • Популярная библиотека химических элементов. Т. 1,2. / Под ред. И. В. Петрянова-Соколова — М.: Наука, 1983. — 575 с., — 572 с.
  • Реми Г. Курс неорганической химии. Т. 1. М.: Издательство иностранной литературы, 1963. — 920 с.
  • Реми Г. Курс неорганической химии. Т. 2. М.: Мир, 1974. — 775 с.
  • Шрайвер Э. Неорганическая химия. Т. 1,2. / Э. Шрайвер, П. Эткинс — М.: Мир, 2004. — 679 с., — 486 с.
  • Энциклопедия неорганических материалов / Под ред. И. М. Федорчен-ко. В 2-х т. — Киев: Укр. сов. энциклопедия, 1977. — 1652 с.
  • Аблесимов Н. Е. Синопсис химии: Справочно-учебное пособие по общей химии — Хабаровск: Издательство ДВГУПС, 2005. — 84 с. — http://www.neablesimov.narod.ru/pub04c.html Архивная копия от 5 декабря 2009 на Wayback Machine
  • Аблесимов Н. Е. Сколько химий на свете? ч. 1. // Химия и жизнь — XXI век. — 2009. — № 5. — С. 49-52.
  • Ахметов Н.С. Общая и неорганическая химия. — 4 изд., испр. — Москва: Высшая школа, Издательский центр «Академия», 2001. — С. 253—269. — 743 с. — 15 000 экз. — ISBN 5-06-003363-5, 5-7695-0704-7.
  • Драго Р. С. Физические методы в неорганической химии. М.: Мир, 1967.

Ссылки

Read other articles:

British rower & businessman (1886-1967) SirAlbert Charles GladstoneBt MBE DLPersonal informationNationalityBritishBorn(1886-10-28)28 October 1886Hawarden Castle, Flintshire, WalesDied2 March 1967(1967-03-02) (aged 80) Medal record Men's rowing Representing  Great Britain Olympic Games 1908 London Men's eight Sir Albert Charles Gladstone, 5th Baronet, MBE, DL (28 October 1886 – 2 March 1967) was a British businessman and rower who won a gold medal at the 1908 Su...

 

 

Fire ForceGambar sampul manga volume pertama炎炎ノ消防隊(En'en no Shōbōtai)GenrePetualangan,[1] fantasi gelap,[2] fiksi ilmiah[3] MangaPengarangAtsushi ŌkuboPenerbitKodanshaPenerbit bahasa InggrisNA Kodansha USAPenerbit bahasa IndonesiaElex Media KomputindoMajalahWeekly Shōnen MagazineDemografiShōnenTerbit23 September 2015 – sekarangVolume34 (Daftar volume) Seri animeSutradaraYuki Yase (musim 1)Tatsuma Minamikawa (musim 2)SkenarioYamato Haijima (musim 1)Ta...

 

 

Part of a series onBritish law Acts of Parliament of the United Kingdom Year      1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 ...

Pabrik Gula Banjardawa atau Suikerfabriek Bandjardawa merupakan salah satu perusahaan industri gula yang pernah berdiri di wilayah Pemalang pada masa Hindia Belanda. Lokasi Pabrik Gula Banjardawa ini berada di desa Banjardawa, Kecamatan Taman, Kabupaten Pemalang. Pabrik Gula Banjardawa pada tahun 1926 Suasana Pabrik Gula Banjardawa pada saat giling tebu ditahun 1888 Berdirinya Pabrik Gula Banjardawa Hasil produksi Pabrik Gula Banjardawa pada tahun 1848 yang tercantum dalam buku Tijdschrift vo...

 

 

Cet article est une ébauche concernant l’architecture ou l’urbanisme. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Pour les articles homonymes, voir Tirant. Tirants et ancres sur des ruines de la cathédrale Saint-Michel de Coventry. Un tirant est une membrure qui reprend des efforts de traction entre deux poussées divergentes, et évite le déversement d'un mur, l’écartement des pièces de charpente...

 

 

Paradigm of the education field Evidence-based education (EBE) is the principle that education practices should be based on the best available scientific evidence, with randomised trials as the gold standard of evidence, rather than tradition, personal judgement, or other influences.[1] Evidence-based education is related to evidence-based teaching,[2][3][4] evidence-based learning,[5] and school effectiveness research.[6][7] The evidenc...

Skin disorder Not to be confused with Seborrheic keratosis. Medical conditionActinic keratosisOther namesSolar keratosis, senile keratosis (SK)Actinic keratosis seen on the back of the handsSpecialtyDermatology Actinic keratosis (AK), sometimes called solar keratosis or senile keratosis,[1][2] is a pre-cancerous[3] area of thick, scaly, or crusty skin.[4][5] Actinic keratosis is a disorder (-osis) of epidermal keratinocytes that is induced by ultraviole...

 

 

Church in Watford, EnglandHoly Rood Church51°39′17″N 0°23′55″W / 51.6548°N 0.3986°W / 51.6548; -0.3986OS grid referenceTQ1087796327LocationWatfordCountryEnglandDenominationRoman CatholicWebsiteRCDoW.org.uk/WatfordHistoryStatusActiveDedicationFeast of the CrossConsecrated5 July 1900ArchitectureFunctional statusParish churchHeritage designationGrade I listedDesignated12 September 1980[1]Architect(s)John Francis BentleyStyleGothic RevivalGroundbreakin...

 

 

Type of parthenogenesis in which females are produced from unfertilized eggs Aphid giving birth by parthenogenesis, the live young growing from unfertilized eggs Thelytoky (from the Greek thēlys female and tokos birth) is a type of parthenogenesis and is the absence of mating and subsequent production of all female diploid offspring as for example in aphids. Thelytokous parthenogenesis is rare among animals and reported in about 1,500 species, about 1 in 1000 of described animal species, acc...

Coppa di Portogallo 1947-1948Taça de Portugal 1947-1948 Competizione Taça de Portugal Sport Calcio Edizione 9ª Date dal 6 giugno 1948al 4 luglio 1948 Luogo  Portogallo Sede finale Stadio nazionale di Jamor Risultati Vincitore  Sporting Lisbona(4º titolo) Secondo  Belenenses Semi-finalisti  Benfica Barreirense Statistiche Incontri disputati 29 Gol segnati 132 (4,55 per incontro) Cronologia della competizione 1945-1946 1948-1949 Manuale La Taça de Por...

 

 

American basketball player and coach Larry StavermanPersonal informationBorn(1936-10-11)October 11, 1936Newport, Kentucky, U.S.DiedJuly 12, 2007(2007-07-12) (aged 70)Edgewood, Kentucky, U.S.NationalityAmericanListed height6 ft 9 in (2.06 m)Listed weight205 lb (93 kg)Career informationHigh schoolNewport Catholic(Newport, Kentucky)CollegeThomas More (1954–1958)NBA draft1958: 9th round, 64th overall pickSelected by the Cincinnati RoyalsPlaying career1958–1964Pos...

 

 

IAI Harop adalah amunisi terbang yang dikembangkan oleh divisi MBT Israel Aerospace Industries. Amunisi peperangan ini dirancang untuk menyerang di atas medan perang dan menyerang sasaran dengan cara meluncurkan cara menabrak serta menembakkan beberapa peluru.[1] Salah satu jet tempur Harop IAI Harop memiliki waktu terbang selama 6 jam dengan jangkauan 200 km pulang pergi. Ini adalah versi yang lebih besar dari IAI Harpy dan diluncurkan dari tabung berbasis darat atau laut, namun dapa...

Degree of individual well-being For other uses, see Quality of life (disambiguation). Quality of life (QOL) is defined by the World Health Organization as an individual's perception of their position in life in the context of the culture and value systems in which they live and in relation to their goals, expectations, standards and concerns.[1] Standard indicators of the quality of life include wealth, employment, the environment, physical and mental health, education, recreation and...

 

 

Une proposition de fusion est en cours entre Little Monsters et Lady Gaga. Les avis sur cette proposition sont rassemblés dans une section de Wikipédia:Pages à fusionner. Les modifications majeures apportées, entre-temps, aux articles doivent être commentées sur la même page. Vous venez d’apposer le modèle {{à fusionner}}, suivez ces étapes : 1. Apposez le bandeau sur les autres pages à fusionner : Little Monsters Utilisez ce texte : {{à fusionner |Little Mon...

 

 

International athletics championship eventMen's short race at the 2002 IAAF World Cross Country ChampionshipsOrganisersIAAFEdition30thDateMarch 23Host cityDublin, Leinster, Ireland VenueLeopardstown RacecourseEvents1Distances4.208 km – Men's shortParticipation124 athletes from 38 nations← 2001 Oostende 2003 Lausanne → The Men's short race at the 2002 IAAF World Cross Country Championships was held at the Leopardstown Racecourse near Dublin, Ireland, on March 23, 2002. Reports of...

Untuk kegunaan lain, lihat Choctaw (disambiguasi). Artikel ini bukan mengenai Ongkaw. ChoctawJumlah populasi160.000  [1]Daerah dengan populasi signifikan Amerika Serikat(Oklahoma, California, Mississippi, Louisiana, Texas, Alabama)BahasaInggris, ChoctawAgamaProtestan, Katolik Roma, kepercayaan tradisionalKelompok etnik terkaitChickasaw, Muscogee, dan Seminole Choctaw (ejaan alternatif Chahta, Chactas, Tchakta, Chocktaw, dan Chactaw) adalah penduduk asli Amerika. Tempat ...

 

 

Terence Tao nel 2021 Medaglia Fields nel 2006 Terence Chi-Shen Tao (cinese: 陶哲軒, cinese semplificato: 陶哲轩; Adelaide, 17 luglio 1975) è un matematico australiano, vincitore nel 2006 della medaglia Fields[1]. La sua attività di ricerca si rivolge soprattutto ai campi dell'analisi armonica, delle equazioni differenziali alle derivate parziali, della combinatoria, della teoria analitica dei numeri e della teoria delle rappresentazioni. Il suo risultato più famoso è il teor...

 

 

كارلو سكاربا (بالإيطالية: Carlo Scarpa)‏  معلومات شخصية الميلاد 2 يونيو 1906(1906-06-02)البندقية الوفاة 28 نوفمبر 1978 (72 سنة)سنداي سبب الوفاة سُقُوط  مواطنة إيطاليا (18 يونيو 1946–28 نوفمبر 1978) مملكة إيطاليا (2 يونيو 1906–18 يونيو 1946) إيطاليا  عضو في أكاديمية فنون الرسم  الحياة العملية �...

Regional culture of native peoples in southwestern North America Puebloan from San Ildefonso Pueblo, New Mexico Navajo family The Indigenous peoples of the North American Southwest are those in the current states of Colorado, Arizona, New Mexico, Utah, and Nevada in the western United States, and the states of Sonora and Chihuahua in northern Mexico. An often quoted statement from Erik Reed (1666) defined the Greater Southwest culture area as extending north to south from Durango, Mexico to D...

 

 

Disambiguazione – Se stai cercando il monte omonimo situato negli USA, vedi Monte Logan (Washington). Monte LoganMonte LoganStato Canada ProvinciaYukon Altezza5 959 m s.l.m. Prominenza5 250 m Isolamento624 km CatenaMonti Sant'Elia Coordinate60°33′36″N 140°24′00″W60°33′36″N, 140°24′00″W Data prima ascensione1925 Autore/i prima ascensioneA.H. MacCarthy Mappa di localizzazioneMonte Logan Modifica dati su Wikidata · Manuale Il monte Logan...