Ма́рковский проце́сс — случайный процесс, эволюция которого после любого заданного значения временно́го параметра не зависит от эволюции, предшествовавшей , при условии, что значение процесса в этот момент фиксировано («будущее» процесса не зависит от «прошлого» при известном «настоящем»; другая трактовка (Вентцель): «будущее» процесса зависит от «прошлого» лишь через «настоящее»).
Определяющее марковский процесс свойство принято называть марковским; впервые оно было сформулировано А. А. Марковым, который в работах 1907 года[источник не указан 890 дней] положил начало изучению последовательностей зависимых испытаний и связанных с ними сумм случайных величин. Это направление исследований известно под названием теории цепей Маркова.
Марковский процесс — это случайный процесс, удовлетворяющий марковскому свойству с естественной фильтрацией.
Для марковских цепей с дискретным временем
В случае, если является дискретным множеством и , определение может быть переформулировано:
.
Пример марковского процесса
Рассмотрим простой пример марковского случайного процесса. По оси абсцисс случайным образом перемещается точка. В момент времени t = 0 точка находится в начале координат и остаётся там в течение одной секунды. Через секунду бросается монета — если выпал герб, то точка X перемещается на одну единицу длины вправо, если решка — влево. Через секунду снова бросается монета и производится такое же случайное перемещение, и так далее. Процесс изменения положения точки («блуждания») представляет собой случайный процесс с дискретным временем (t = 0, 1, 2, …) и счётным множеством состояний. Такой случайный процесс является марковским, так как следующее состояние точки зависит только от настоящего (текущего) состояния и не зависит от прошлых состояний (неважно, каким путём и за какое время точка попала в текущую координату).
Также примером марковского процесса является пуассоновский процесс с независимыми приращениями.