Магнитогидродинамический генератор

МГД-генератор Фарадея с линейным соплом и сегментированными электродами:
entry — входное отверстие для подвода рабочего тела (ионизированного газа);
acceleration nozzle — сопло для увеличения скорости рабочего тела;
solenoids — соленоиды для создания магнитного поля;
segmented electrodes — электроды, разделённые на сегменты для уменьшения эффекта Холла;
output — выходное отверстие для вывода рабочего тела;
красная линия — направление движения положительно заряженных частиц;
синяя линия — направление движения отрицательно заряженных частиц;
B — магнитная индукция;
I — электрический ток;
v — скорость рабочего тела

Магнитогидродинамический генератор, МГД-генератор — энергетическая установка, в которой энергия рабочего тела (электропроводящей среды), движущегося в магнитном поле, преобразуется непосредственно в электрическую энергию.

Происхождение названия

В МГД-генераторе происходит прямое преобразование механической энергии движущейся среды в электрическую энергию. Движение таких сред описывается магнитной гидродинамикой (МГД), что и дало наименование устройству.

Принцип действия

Принцип работы МГД-генератора, как и обычного машинного генератора, основан на явлении электромагнитной индукции, то есть — на возникновении тока в проводнике, пересекающем силовые линии магнитного поля. В отличие от машинных генераторов проводником в МГД-генераторе является само рабочее тело.

Рабочее тело движется поперёк магнитного поля, и под действием магнитного поля возникают противоположно направленные потоки носителей зарядов противоположных знаков.

На заряженную частицу действует сила Лоренца.

Разделение положительно (q>0) и отрицательно (q<0) заряженных частиц под действием магнитного поля B

Рабочим телом МГД-генератора могут служить следующие среды:

Первые МГД-генераторы использовали в качестве рабочего тела электропроводные жидкости (электролиты). В настоящее время применяют плазму, в которой носителями зарядов являются в основном свободные электроны и положительные ионы. Под действием магнитного поля носители зарядов отклоняются от траектории, по которой газ двигался бы в отсутствие поля. При этом в сильном магнитном поле может возникать поле Холла (см. эффект Холла) — электрическое поле, образуемое в результате соударений и смещений заряженных частиц в плоскости, перпендикулярной магнитному полю.

МГД-насос

МГД-генераторы обладают свойством обратимости. При приложении на электроды электрического напряжения на электропроводящую среду будет действовать сила, как на проводник с током в магнитном поле. Эту силу можно использовать для перекачки токопроводящих жидкостей и газов.

Устройство

МГД-генератор состоит из канала, по которому движется рабочее тело (обычно плазма), системы магнитов для создания магнитного поля и электродов, отводящих полученную энергию. В качестве магнитов могут быть использованы электромагниты или постоянные магниты, а также другие источники магнитного поля.

Газ способен проводить (см. электропроводность) электрический ток при нагреве до температуры термической ионизации, составляющей около 10 000 К. Для снижения этой температуры до 2200—2700 К в разогретый газ вводят присадки, содержащие щелочные металлы. Например, введение 1% калия в виде поташа позволяет увеличить электропроводность в десятки раз. Без присадок при температурах 2200—2700 К газ представляет собой низкотемпературную плазму и проводит ток хуже воды.

В отличие от МГД-генератора с жидким рабочим телом, где генерирование электроэнергии идёт только за счёт преобразования части кинетической или потенциальной энергии потока при постоянной температуре, в МГД-генераторах с газовым рабочим телом принципиально возможны три режима:

  • с сохранением температуры и уменьшением кинетической энергии;
  • с сохранением кинетической энергии и уменьшением температуры;
  • со снижением и температуры, и кинетической энергии.

Описание работы МГД-генератора:

  • в камеру сгорания подаются топливо, окислитель и присадки;
  • топливо сгорает и образуются продукты горения — газы;
  • газы проходят через сопло, расширяются и увеличивают свою скорость до сверхзвуковой;
  • газы поступают в камеру, через которую пропускается магнитное поле, и в стенках которой установлены электроды;
  • заряженные частицы из ионизированного газа, оказавшись под влиянием магнитного поля, отклоняются от первоначальной траектории под действием силы Лоренца и устремляются к электродам;
  • между электродами возникает электрический ток.

Классификация

Классификация по продолжительности работы[1]:

  • с длительным временем работы;
  • кратковременного действия;
    • импульсные;
    • взрывные.

Источниками тепла в МГД-генераторах могут быть:

В качестве рабочих тел в МГД-генераторах могут использоваться:

По типу рабочего цикла различают МГД-генераторы:

  • с открытым циклом. Рабочее тело (продукты сгорания) смешивается с присадками (щелочными металлами), проходит через рабочую камеру МГД-генератора, очищается от присадок и выбрасывается в атмосферу;
  • с замкнутым циклом. Рабочее тело подаётся в теплообменник (получает тепловую энергию, возникшую при сжигании топлива), поступает в рабочую камеру МГД-генератора, проходит через компрессор и, замыкая цикл, возвращается в теплообменник.

По способу отвода электроэнергии различают МГД-генераторы:

  • кондукционные — генерирующие постоянный или пульсирующий ток (в зависимости от величины изменения магнитного поля или скорости движения рабочего тела). В рабочем теле, протекающем через поперечное магнитное поле, возникает электрический ток. Ток замыкается на внешнюю цепь через съёмные электроды, вмонтированные в боковые стенки канала;
  • индукционные — генерирующие переменный ток. В таких МГД-генераторах электроды отсутствуют, и требуется создание бегущего вдоль канала магнитного поля.

По форме каналы в МГД-генераторах могут быть:

  • линейные (в кондукционных и индукционных генераторах);
  • дисковые и коаксиальные холловские (в кондукционных генераторах);
  • радиальные (в индукционных генераторах).

По конструкции и способу соединения электродов различают следующие МГД-генераторы:

  • фарадеевский генератор. Электроды выполнены сплошными или разделены на секции. Разделение на секции выполняется для уменьшения циркуляции тока вдоль канала и через электроды (для уменьшения эффекта Холла). В результате носители заряда движутся перпендикулярно оси канала на электроды и в нагрузку. Чем значительнее эффект Холла, тем на большее число секций необходимо разделить электроды, причём каждая пара электродов должна иметь свою нагрузку, что весьма усложняет конструкцию установки;
  • холловский генератор. Электроды расположены друг против друга и короткозамкнуты. Напряжение снимается вдоль канала за счёт наличия поля Холла. Применение таких МГД-генераторов наиболее выгодно при больших магнитных полях. За счёт наличия продольного электрического поля, можно получить значительное напряжение на выходе генератора;
  • сериесный генератор. Электроды соединены диагонально.

Наибольшее распространение с 1970-х годов получили кондукционные линейные МГД-генераторы на продуктах сгорания ископаемых топлив с присадками щелочных металлов, работающие по открытому циклу.

История изобретения

Впервые идея использования жидкого проводника была выдвинута Майклом Фарадеем в 1832 году. Он доказал, что в движущемся проводнике, находящемся под действием магнитного поля, возникает электрический ток. В 1832 году Фарадей с помощниками спустил с моста Ватерлоо в воду реки Темза два медных листа. Листы были подключены проводами к гальванометру. Ожидалось, что воды реки, текущей с запада на восток, — движущийся проводник и магнитное поле Земли создадут электрический ток, который зафиксируется гальванометром. Опыт не удался. К возможным причинам неудачи причисляют низкую электропроводность воды и малую величину напряженности магнитного поля Земли.

В дальнейшем, в 1851 году английскому учёному Волластону удалось измерить ЭДС, индуцированную приливными волнами в Ла-Манше, однако отсутствие необходимых знаний по электрофизическим свойствам жидкостей и газов долго тормозило использование описанных эффектов на практике.

В последующие годы исследования развивались по двум основным направлениям:

  • использование эффекта индуцирования ЭДС для измерения скорости движущейся электропроводной среды (например, в расходомерах);
  • генерирование электрической энергии.

Хотя первые патенты на генерирование электричества МГД-генератором с применением ионизированного газа энергии были выданы ещё в 1907—1910 годы, описанные в них конструкции были на практике нереализуемы. Тогда не существовало материалов, способных работать в газовой среде при температуре 2500—3000 °C.

Разработка МГД-генераторов стала возможной после создания теоретической и экспериментальной базы для изучения магнитной гидродинамики. Основные законы МГД были открыты в 1944 году шведским учёным Ханнесом Альфвеном при изучении поведения космической плазмы (плазмы, заполняющей межзвёздное пространство) в магнитном поле.

Первый работающий МГД-генератор был построен только в 1950-х годах благодаря развитию теории магнитной гидродинамики и физики плазмы, исследованиям в области физики высоких температур и созданию к этому времени жаропрочных материалов, использовавшихся тогда, прежде всего, в ракетной технике.

Источником плазмы с температурой 3000 K в первом МГД-генераторе, построенном в США в 1959 году, служил плазмотрон, работавший на аргоне с присадкой щелочного металла для повышения степени ионизации газа. Мощность генератора составляла 11,5 кВт. К середине 1960-х годов мощность МГД-генераторов на продуктах сгорания удалось довести по 32 МВт («Марк-V», США).

В СССР первая лабораторная установка «У-02», работавшая на природном топливе, была создана в 1964 году[2]. В 1971 году была запущена опытно-промышленная энергетическая установка «У-25» Института высоких температур РАН, имеющая расчётную мощность 20−25 МВт.
«У-25» работала на продуктах сгорания природного газа с добавкой K2CO3 в качестве ионизирующейся присадки, температура потока — около 3000 К. Установка имела два контура:

  • первичный, разомкнутый, в котором преобразование тепла продуктов сгорания в электрическую энергию происходит в МГД-генераторе;
  • вторичный, замкнутый — паросиловой контур, использующий тепло продуктов сгорания вне канала МГД-генератора.

Электрическое оборудование «У-25» состояло из МГД-генератора и инверторной установки, собранной на ртутных игнитронах. В 1992 году на базе опытно-промышленной площадки «У-25» была создана ТЭЦ-28, вошедшая в состав энергосистемы Москвы. В дальнейшем вошла в состав ТЭЦ-21.

Модель магнитогидродинамической установки У-25, Государственный Политехнический музей (Москва)

В России промышленный МГД-генератор строился в Новомичуринске Рязанской области, где рядом с Рязанской ГРЭС была специально построена МГДЭС. Однако генератор так и не был запущен в эксплуатацию. С начала 1990-х годов работы были полностью свёрнуты, а МГД-электростанция, без МГД-генератора работающая как обычная тепловая электростанция, после нескольких преобразований в конце концов была присоединена к Рязанской ГРЭС.

В ходе геофизического эксперимента «Хибины» в середине 1970-х годов в СССР по электрозондированию земной коры использовался импульсный МГД-генератор с максимальной мощностью 100 МВт, силой тока 20 кА и временем работы около 10 с[1].

Характеристики

Мощность

Мощность МГД-генератора пропорциональна проводимости рабочего тела, квадрату его скорости и квадрату напряжённости магнитного поля. Для газообразного рабочего тела в диапазоне температур 2000—3000 К проводимость пропорциональна температуре в 11-13-й степени и обратно пропорциональна корню квадратному из давления.

Скорость потока

Скорости потока в МГД-генераторе могут быть в широком диапазоне — от дозвуковых до гиперзвуковых, свыше 1900 м/сек.

Индукция магнитного поля

Индукция магнитного поля определяется конструкцией магнитов и ограничивается значениями около 2 Тл для магнитов со сталью и до 6—8 Тл для сверхпроводящих магнитных систем.

Достоинства и недостатки

Достоинства:

  • отсутствие подвижных узлов и деталей (нет потерь на трение);
  • возможность повысить КПД электростанций до 65 % (так как отработанный в МГД генераторе газ пригоден для выработки электроэнергии традиционными методами);
  • большие мощности (2 ГВт и более[уточнить]); увеличение мощности достигается путём увеличения объёма установки и практически ничем не ограничено, так как с увеличением объёма роль нежелательных поверхностных процессов (загрязнений, токов утечки) только уменьшается;
  • высокая манёвренность;
  • снижение выброса вредных веществ, содержащихся в отработанных газах, с ростом КПД.

Недостатки:

  • высокие требования к материалам электродов и стенок рабочей камеры (выдерживание температур 2000—3000 К, устойчивость к химически активному и горячему ветру, имеющему скорость 1000—2000 м/с);
  • вредные выбросы (продукты сгорания и примеси — например, цезий).

В сочетании с паросиловыми установками, МГД-генератор позволяет получить большие мощности в одном агрегате, до 500—1000 МВт.

Применение

Теоретически, существуют пять направлений промышленного применения МГД-генераторов:

  1. тепловые электростанции с МГД-генератором на продуктах сгорания топлива (открытый цикл); такие установки наиболее просты и имеют ближайшую перспективу промышленного применения;
  2. атомные электростанции с МГД-генератором на инертном газе, нагреваемом в ядерном реакторе (закрытый цикл); перспективность этого направления зависит от развития ядерных реакторов с температурой рабочего тела свыше 2000 K;
  3. термоядерные электростанции безнейтронного цикла (например, D + 3He → p + 4He + 18,353 МэВ) c МГД-генератором на высокотемпературной плазме;
  4. циклы с МГД-генератором на жидком металле, которые перспективны для атомной энергетики и для специальных энергетических установок сравнительно небольшой мощности;
  5. гиперзвуковые авиационные системы. (свыше 4 М[уточнить]).

Энергетические установки с МГД-генератором могут применяться также как резервные или аварийные источники энергии в энергосистемах, для бортовых систем питания космической техники, в качестве источников питания различных устройств, требующих больших мощностей на короткие промежутки времени (например, для питания электроподогревателей аэродинамических труб и т. п.).

Несмотря на заманчивые перспективы и бурное развитие исследований в области МГД-генераторов в 1970-е годы, устройства на их основе так и не нашли широкого промышленного применения. Камнем преткновения является отсутствие материалов для стенок генератора и электродов, способных работать при возникающих запредельных температурах достаточно долгое время[2].

Другой проблемой является то, что МГД-генераторы выдают только постоянный ток. Соответственно, необходимы мощные и экономичные инверторы[3].

В телевизионных учебных передачах по физике, выходящих в СССР в конце 1980-х годов, сообщалось, что в Рязанской области запущен и работает промышленный МГД-генератор, что не соответствовало действительности — он так и не заработал. Речь идёт о Рязанской ГРЭС-24. Разработка установки велась, но столкнулась с определёнными[какими?][уточнить] проблемами. В конечном итоге создание МГД-генератора отменили, а паровой котел установки был введён в эксплуатацию в 1984 году автономно[4]. В установке предусматривалась МГД-часть мощностью 500 МВт и следующая за ней газотурбинная надстройка мощностью 300—310 МВт[5]. Последняя впоследствии была доведена отдельно[4] и введена в эксплуатацию 1 июня 2010 года[6].

В XXI веке строятся и испытываются экспериментальные подводные лодки с магнитогидродинамической силовой установкой[7].

См. также

Примечания

  1. 1 2 Олег Мамаев. Как из движения сделать электричество: МГД-генераторы // Наука и жизнь. — 2015. — № 8. — С. 72—80. — ISSN 0028-1263. — URL Архивная копия от 4 марта 2016 на Wayback Machine
  2. 1 2 Конюшая Ю. П. МГД-генераторы // Открытия советских ученых. — М.: Московский рабочий, 1979.
  3. Когда станут реальностью плазменные генераторы электричества? «Электрик Инфо». «КМ онлайн» (28 июля 2013). Дата обращения: 28 мая 2016. Архивировано 24 июня 2016 года.
  4. 1 2 Березинец П. А., Доверман Г. И., Терешина Г. Е., Крючкова Т. И. Газотурбинная надстройка энергоблока мощностью 300 МВт ГРЭС-24 с газотурбинной установкой ГТЭ-110. ОАО «ВТИ» – ЗАО «Оптсим-К», г. Москва. Дата обращения: 28 мая 2016. Архивировано из оригинала 23 июня 2016 года.
  5. МГД-установка Рязанской ГРЭС. Энциклопедия по машиностроению XXL. Дата обращения: 6 июля 2020. Архивировано 6 января 2019 года.
  6. Рязанская ГРЭС. ПАО «Газпром», ОГК-2. Дата обращения: 28 мая 2016. Архивировано из оригинала 28 сентября 2020 года.
  7. В 2017 году вооружённые силы КНР испытали экспериментальную подводную лодку с уникальной магнитогидродинамической силовой установкой собственной разработки Архивная копия от 4 мая 2022 на Wayback Machine // ПопМех, 9.04.2022

Литература

  • Ашкинази Л. МГД-генератор // Квант, 1980. — № 11. — С. 2—8.
  • Рыжкин В. Электростанции газотурбинные, парогазовые, атомные и с МГД-генераторами // Тепловые электрические станции, 1975. — Глава 25.
  • Тамоян Г. С. Учебное пособие по курсу «Специальные электрические машины» — МГД-машины и устройства.
  • Каулинг Т. Магнитная гидродинамика. М.: Изд-во Мир, 1964. — 80 с.
  • Касьян А. Напряжение плазменного смерча или просто — о МГД-генераторе // Двигатель, 2005 — № 6.
  • «Физика машин»
  • [1] на «Живая наука»

Read other articles:

Bagian dari seriGereja Katolik menurut negara Afrika Afrika Selatan Afrika Tengah Aljazair Angola Benin Botswana Burkina Faso Burundi Chad Eritrea Eswatini Etiopia Gabon Gambia Ghana Guinea Guinea-Bissau Guinea Khatulistiwa Jibuti Kamerun Kenya Komoro Lesotho Liberia Libya Madagaskar Malawi Mali Maroko Mauritania Mauritius Mesir Mozambik Namibia Niger Nigeria Pantai Gading Republik Demokratik Kongo Republik Kongo Rwanda Sao Tome dan Principe Senegal Seychelles Sierra Leone Somalia Somaliland ...

 

For other international Syfy branded channels, see List of Syfy TV channels. Television channel SFCountryAustraliaProgrammingLanguage(s)EnglishPicture format576i (SDTV 16:9)OwnershipOwnerSony Pictures TelevisionNBCUniversalCBS Studios International[1]ParentTV1 General Entertainment PartnershipSister channelsTV1HistoryLaunched1 December 200623 July 2012(relaunch; as SF)Closed31 December 2013Replaced bySyfyFormer namesSci Fi Channel (2006–2012) SF (formerly Sci Fi Channel) was an Aust...

 

Cet article possède un paronyme, voir Ippon. Hippone Ruines d'Hippone, basilique Saint-Augustin. Localisation Pays Algérie Coordonnées 36° 52′ 56″ nord, 7° 45′ 00″ est Géolocalisation sur la carte : Algérie HipponeHippone modifier  Hippone (en latin Hippo Regius) est le nom antique de la ville d'Annaba, se trouvant au nord-est de l'Algérie. Elle devint l'une des principales cités de l'Afrique romaine. Saint Augustin est évêque de la ...

Roti pisangJenisRoti manisTempat asalAmerika SerrikatBahan utamaPisang, gandum, air, gulaVariasiRoti pisang kismis, roti pisang kacang, roti pisang coklat chipSunting kotak info • L • BBantuan penggunaan templat ini Buku resep: Roti pisang  Media: Roti pisang Roti pisang adalah sejenis roti manis yang terbuat dari pisang yang dihaluskan.[1] Hidangan ini sering berupa roti cepat yang lembab dan manis, tetapi beberapa resep mengandung ragi. Referensi ^ Barrowman, ...

 

French wrestler and actor (1946–1993) For the film, see André the Giant (film). André the GiantAndré in 1989Birth nameAndré René RoussimoffBorn(1946-05-19)19 May 1946Coulommiers, FranceDied28 January 1993(1993-01-28) (aged 46)[1][2]Paris, FranceChildren1[3]Professional wrestling careerRing name(s)André RoussimoffAndré the GiantAndré the Giant FrenchmanThe Ultimate GiantGéant Ferré[4]Giant MachineJean Ferré[4]Monster Eiffel TowerMonster...

 

Computer program for chess analysis and game This article is part of the series onChess programming Board representations 0x88 Bitboards Evaluation functions Deep neural networks (Transformers) Attention Efficiently updatable neural networks Handcrafted evaluation functions Piece-square tables Reinforcement learning Stochastic gradient descent Supervised learning Texel tuning Unsupervised learning Graph and tree search algorithms Minimax Alpha-beta pruning Principal variation search Quiescenc...

Formula One racing car This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Lotus 72 – news · newspapers · books · scholar · JSTOR (June 2019) (Learn how and when to remove this template message) Lotus 72Emerson Fittipaldi driving the 72 at the Nürburgring in 1971CategoryFormula OneConstructorTeam LotusDesigner(...

 

† Человек прямоходящий Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:Синапсиды�...

 

Provinsi Bac Lieu merupakan sebuah provinsi di Vietnam. Provinsi ini terletak di bagian selatan negara ini. Provinsi ini memiliki luas wilayah 2.525 km². Dengan memiliki jumlah penduduk 786.200 jiwa (2004). Provinsi ini memiliki angka kepadatan penduduk 311 jiwa/km². Ibu kotanya ialah Bac Lieu. Provinsi ini terbagi menjadi 4 distrik yaitu Dong Hai, Gia Rai, Hong Dan, dan Vinh Loi. Ekonomi Hasil utama di Bac Lieu ialah beras, perikanan, makanan olahan, dan pakaian. lbsPembagian adminis...

Перуанский анчоус Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеГруппа:Костные рыбыКласс:Лучепёрые рыбыПодкласс:Новопёрые �...

 

Hotel and casino in North Las Vegas, Nevada Fiesta RanchoFiesta Rancho in 2010 Location North Las Vegas, Nevada, U.S. Address 2400 North Rancho DriveOpening dateDecember 14, 1994; 29 years ago (1994-12-14)Closing dateMarch 17, 2020; 4 years ago (2020-03-17)ThemeSouthwestern partyNo. of rooms100Total gaming space59,932 sq ft (5,567.9 m2)Notable restaurantsGarduño'sBig Ern's BBQDenny'sMcDonald's (1994-2010)Panda ExpressSubwayFestival BuffetVil...

 

جزء من سلسلة مقالات حولعلم العملات العملات العملة معدنية ورقية التزوير قائمة العملات [الإنجليزية] أيزو 4217 قائمة العملات المتداولة إفريقية الأمريكيتين أوروبة آسية أوقيانوسية عملة محلية عملات الشركات [الإنجليزية] نظام التبادل المحلي [الإنجليزية] زمنية عملة تخيلية [الإنجلي...

本條目存在以下問題,請協助改善本條目或在討論頁針對議題發表看法。 此條目需要編修,以確保文法、用詞、语气、格式、標點等使用恰当。 (2015年7月23日)請按照校對指引,幫助编辑這個條目。(幫助、討論) 此條目內容疑欠准确,有待查證。 (2015年7月23日)請在讨论页討論問題所在及加以改善,若此條目仍有爭議及准确度欠佳,會被提出存廢討論。 此條目之中立性有�...

 

Painting by Artemisia Gentileschi and Onofrio Palumbo Susanna and the EldersArtistArtemisia Gentileschi, Onofrio PalumboYear1652MediumOil on canvasDimensions200.3 cm × 225.6 cm (78.9 in × 88.8 in)LocationPinacoteca Nazionale, Bologna Susanna and the Elders is a 1652 painting by the Italian artist Artemisia Gentileschi. It currently hangs in the Pinacoteca Nazionale, Bologna. The painting, over two metres broad, was completed in collaboration with Ge...

 

39°51′38″N 4°1′27.3″W / 39.86056°N 4.024250°W / 39.86056; -4.024250 مسجد باب المردوم   إحداثيات 39°51′38″N 4°01′27″W / 39.86055556°N 4.02425°W / 39.86055556; -4.02425   معلومات عامة الدولة إسبانيا  أبعاد المبنى التفاصيل التقنية المواد المستخدمة طابوق  التصميم والإنشاء   معلومات أخر�...

Dépôt de Nakahara鎌倉車両センター中原支所 (Centre de matériel roulant de Kamakura Succursale de Nakahara)Le centre en 2006 lors d'une journée Portes ouvertesPrésentationType Dépôt ferroviaireConstruction 1960 (Showa 35)Propriétaire JR East (siège de la région métropolitaine)LocalisationPays JaponPréfecture KanagawaVille KawasakiAdresse 5-chome Kamiodanaka, Nakahara Ward, Kawasaki City, Kanagawa Prefecture, JaponCoordonnées 35° 35′ 02″ N, 139° ...

 

British gay magazine This article may need to be rewritten to comply with Wikipedia's quality standards. You can help. The talk page may contain suggestions. (August 2022) AttitudeJonathan Bailey on the cover of the magazine's inaugural Attitude 101 List of LGBTQ trailblazers, February 2021EditorCliff JoannouContent EditorJamie TabbererCommercial EditorDale FoxCategoriesGay, Men's lifestyleFrequencyBi-monthlyCirculation11,000 (digital only) plus print circulation unspecified[1]First i...

 

Busra AlgerieLahir1935 Sianok Anam Suku, IV Koto, Agam, Hindia BelandaMeninggal17 Februari 2007 (umur 72) Pekanbaru, RiauKebangsaan IndonesiaPekerjaanWartawanSuami/istriYosniAnakYoopie Algerie Donie Algerie Busra Algerie (lahir di Sianok Anam Suku, IV Koto, Agam, Sumatera Barat tahun 1935 - meninggal di Pekanbaru, Riau 17 Februari 2007 pada umur 72 tahun) adalah seorang wartawan dan penulis Indonesia dari Pekanbaru, Riau.[1] Ia merupakan salah seorang pendiri koran Riau Pos serta PWI...

Questa voce sull'argomento calciatori tedeschi è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Ernst PlenerNazionalità Germania Calcio RuoloAttaccante CarrieraSquadre di club1 1937-1942 Vorwärts Gleiwitz? (?)1942-1943 Breslauer SpVgg 02? (?)1943-1944 HSV Groß Born? (?) Nazionale 1940 Germania2 (2) 1 I due numeri indicano le presenze e le reti segnate, per le sole partite di campi...

 

Politics of Samoa Constitution Executive O le Ao o le Malo (head of state) Tuimalealiʻifano Vaʻaletoʻa Sualauvi II Council of Deputies Prime Minister Fiamē Naomi Mataʻafa Deputy Prime Minister Tuala Iosefo Ponifasio Cabinet Ministries Legislative Legislative Assembly Speaker: Papali’i Li’o Taeu Masipau Members Judiciary Court of Appeal of Samoa Supreme Court Chief Justice: Satiu Simativa Perese Elections Recent elections General: 201120162021Next Political parties Administrative div...