Локарнское соглашение о международной классификации промышленных образцов

Локарнское соглашение
Локарнское соглашение об учреждении Международной классификации промышленных образцов
Дата подписания 8 октября 1968
Место подписания Локарно, Швейцария
Вступление в силу 27 апреля 1971
Место хранения Правительство Швейцарии[1]
Языки английский, французский[1]
Сайт WIPO Lex (англ.) (ар.) (исп.) (кит.) (рус.) (фр.)

Локарнское соглашение (англ. Locarno Agreement Establishing an International Classification for Industrial Designs) учреждает классификацию промышленных образцов (Локарнскую классификацию).

«Компетентные ведомства Договаривающихся государств должны указывать в официальных документах, касающихся депонирования или регистрации промышленных образцов, номера классов и подклассов Классификации, к которым относятся товары, в которых реализованы промышленные образцы. Они обязаны делать то же самое в любой своей публикации, относящейся к депонированию или регистрации промышленных образцов»[2].

Административные функции Соглашения выполняет Всемирная организация интеллектуальной собственности.

По состоянию на 2022 год участниками является 61 государство[3].

Примечания

  1. 1 2 В соответствии с пунктом 1(а), статьи 14 Соглашения (измененного 28 сентября 1979 года).
  2. Локарнское соглашение об учреждении Международной классификации промышленных образцов. Всемирная организация интеллектуальной собственности. Дата обращения: 18 декабря 2015. Архивировано 22 декабря 2015 года.
  3. Locarno Agreement. Дата обращения: 24 июня 2022. Архивировано 29 июля 2020 года.

См. также

Ссылки

Read other articles:

Bruce RaunerRauner pada 2016 Gubernur Illinois ke-42Masa jabatan12 Januari 2015 – 14 Januari 2019WakilEvelyn Sanguinetti PendahuluPat QuinnPenggantiJ. B. Pritzker Informasi pribadiLahirBruce Vincent Rauner18 Februari 1956 (umur 68)Chicago, Illinois, ASPartai politikRepublikSuami/istriElizabeth Wessel ​ ​(m. 1980; bercerai 1993)​ Diana Mendley ​(m. 1994)​Anak6PendidikanDartmouth College (Sarjana)Harvar...

 

The Treatment of Armenians in the Ottoman Empire PengarangArnold Joseph ToynbeeJudul asliThe Treatment of Armenians in the Ottoman Empire: Documents presented to Viscount Grey of FallodonNegaraInggris, Britania RayaBahasaInggrisSubjekSejarahPenerbitHodder and StoughtonTanggal terbit1916Jenis mediaCetak (Sampul keras)Halaman684 Blue Book, yang berjudul resmi The Treatment of Armenians in the Ottoman Empire, adalah sebuah buku yang dikompilasikan oleh Viscount Bryce dan Arnold J....

 

HIH Pangeran Kitashirakawa YoshihisaJenderal Jepang Pangeran Kitashirakawa YoshihisaLahir1 April 1847Kyoto, JepangMeninggal5 November 1895(1895-11-05) (umur 48)Tainan, TaiwanPengabdianKekaisaran JepangDinas/cabang Angkatan Darat Kekaisaran JepangLama dinas1887-1895PangkatLetnan JenderalKomandanDivisi IJA ke-4, Divisi IJA ke-1Perang/pertempuranEkspedisi Taiwan 1874 Pangeran Kitashirakawa Yoshihisa (北白川宮能久親王code: ja is deprecated , Kitashirakawa-no-miya Yoshihisa-shinn...

Untuk the book, lihat Liao-Fan's Four Lessons. Ini adalah nama Tionghoa; marganya adalah Liao. Liao FanLiao Fan dengan Silver Bear untuk Aktor Terbaik di Berlin pada 2014Lahir14 Februari 1974 (umur 50)Changsha, Hunan, TiongkokAlmamaterAkademi Teater ShanghaiPekerjaanPemeranTahun aktif1980–sekarangPasanganHuo Xin (霍昕)[1]Orang tuaLiao Bingyan (廖丙炎) Liao Fan Hanzi: 廖凡 Alih aksara Mandarin - Hanyu Pinyin: Liào Fán Liao Fan (Hanzi: 廖凡; lahir 14 Februari ...

 

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Wonder Woman Earth-Two – news · newspapers · books · scholar · JSTOR (June 2012) (Learn how and when t...

 

Artikel atau bagian mungkin perlu ditulis ulang agar sesuai dengan standar kualitas Wikipedia. Anda dapat membantu memperbaikinya. Halaman pembicaraan dari artikel ini mungkin berisi beberapa saran. Cerita Alkisah, di sebuah pulau di Bengkulu, Sumatera selatan berdirilah sebuah kerajaan yang dikenal dengan nama Kutei Rukam dan dipimpin oleh seorang raja bernama Raja Bikau Bermano. Sang raja mempunyai delapan orang putra. Pada suatu waktu, sang raja melaksanakan upacara perkawinan untuk putran...

Venezia Santa LuciaStasiun kereta apiStasiun kereta api Venezia Santa LuciaLokasiFondamenta Santa Lucia, 30121, Venesia, VenetoItaliaKoordinat45°26′27″N 12°19′15″E / 45.44083°N 12.32083°E / 45.44083; 12.32083Koordinat: 45°26′27″N 12°19′15″E / 45.44083°N 12.32083°E / 45.44083; 12.32083PemilikRete Ferroviaria ItalianaOperatorGrandi Stazioni (stasiun) Trenitalia (kereta api)JalurJalur kereta api Milan–Venesia Jalur kereta ...

 

Art and architecture of Buddhist temples in Thailand This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Thai temple art and architecture – news · newspapers · books · scholar · JSTOR (March 2021) (Learn how and when to remove this template message) Interior of Ubosot of Wat Hong Rattanaram, Bangkok Thai temple ...

 

Hazard symbol used by emergency personnel to identify the risks posed by hazardous materials NFPA 704fire diamond 4 4 4WThis article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: NFPA 704 – news · newspapers · books · scholar · JSTOR (April 2024) (Learn how and when to remove this template message)NFPA 704 sa...

Questa voce sull'argomento politici salvadoregni è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. José Napoleón Duarte Presidente di El SalvadorDurata mandato1º giugno 1984 –1º giugno 1989 PredecessoreÁlvaro Magaña SuccessoreAlfredo Cristiani Presidente della Giunta Rivoluzionaria di Governo di El SalvadorDurata mandato13 dicembre 1980 –2 maggio 1982 Vice presidenteJaime Abdul Gutiérrez PredecessoreJaime Abdu...

 

Doge of the Republic of Genoa and king of Corsica This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. Please help improve this article by introducing more precise citations. (July 2020) (Learn how and when to remove this message) Giovanni Battista Lomellini108th Doge of the Republic of GenoaIn office24 July 1646 – 24 July 1648Preceded byLuca GiustinianiSucceeded byGiacomo De Franchi Toso P...

 

Archaeological site in Sindh, Pakistan This article is about the archaeological site. For the 2016 Bollywood film, see Mohenjo Daro (film). Mohenjo-daroShown within SindhShow map of SindhMohenjo-daro (Pakistan)Show map of PakistanMohenjo-daro (South Asia)Show map of South AsiaLocationLarkana District, Sindh,  PakistanCoordinates27°19′45″N 68°08′20″E / 27.32917°N 68.13889°E / 27.32917; 68.13889TypeSettlementArea250 ha (620 acres)[1]HistoryF...

People of Indian birth or origin who reside in Saudi Arabia Not to be confused with Indian Saudis. This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Non-Resident Indians in Saudi Arabia – news · newspapers · books · scholar · JSTOR (August 2017) (Learn how and when to remove this message) Ethnic group Indians ...

 

Limited comic book series The League of Extraordinary Gentlemen, Volume IICoverPublication informationPublisherWildstorm (DC Comics)ScheduleIrregularFormatLimited seriesGenreAlternate historySteampunkPublication dateSeptember 2002 – November 2003No. of issues6Main character(s)Mina MurrayAllan QuatermainHawley GriffinDr. Henry Jekyll/Mr. Edward HydeCaptain NemoCreative teamWritten byAlan MooreArtist(s)Kevin O'NeillLetterer(s)Bill OakleyColorist(s)Benedict DimagmaliwEditor(s)Sc...

 

Pour les articles homonymes, voir Vérité (homonymie). Walter Seymour Allward, Veritas, 1920. Nec mergitur ou La Vérité sortant du puits, toile de Édouard Debat-Ponsan, 1898. La vérité (du latin veritas, « vérité », dérivé de verus, « vrai »)[1] est la correspondance entre une proposition et la réalité à laquelle cette proposition réfère. Cependant cette définition correspondantiste de la vérité n'est pas la seule, il existe de nombreuses définition...

Cet article est une ébauche concernant une localité malienne. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Dogani Béré Administration Pays Mali Région Mopti Cercle Bandiagara Maire Kalilou Diombélé (URD) Démographie Population 4 419 hab. (2009[1]) Population précédent recensement 3 259 hab. Géographie Coordonnées 14° 54′ 00″ nord, 3° 25′ 00″&#...

 

Railway station in Hebei, China This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Xibali railway station – news · newspapers · books · scholar · JSTOR (March 2010) (Learn how and when to remove this message) Xibali西八里站General informationLocationHuailai County, Zhangjiakou, HebeiChinaLine(s)Beijing-Baotou railwayOther in...

 

1996 United States House of Representatives elections in Arizona ← 1994 November 5, 1996 (1996-11-05) 1998 → All 6 Arizona seats to the United States House of Representatives   Majority party Minority party   Party Republican Democratic Last election 5 1 Seats won 5 1 Seat change Popular vote 800,917 521,345 Percentage 59.05% 38.43% Swing 0.33% 1.17% Republican   40–50%   60–70% Democratic   ...

Diffuse nebula in the constellation Tucana NGC 261Diffuse nebulaObservation data: J2000 epochRight ascension00h 46m 27.9s[1]Declination−73° 06′ 13″[1]Apparent dimensions (V)1.3' × 1.1'[2]ConstellationTucanaDesignationsESO 029-EN 012, IRAS 00447-7322[1]See also: Lists of nebulae NGC 261 NGC 261 is a diffuse nebula located in the constellation Tucana. It was discovered on September 5, 1826, by James Dunlop.[3] References ^ a ...

 

Number sequence 3,0,2,3,2,5,5,7,10,... Spiral of equilateral triangles with side lengths equal to Perrin numbers. In mathematics, the Perrin numbers are a doubly infinite constant-recursive integer sequence with characteristic equation x3 = x + 1. The Perrin numbers bear the same relationship to the Padovan sequence as the Lucas numbers do to the Fibonacci sequence. Definition The Perrin numbers are defined by the recurrence relation P ( 0 ) = 3 , P ( 1 ) = 0 , P ( 2 ) = 2 , P ( n ) = P ( n &...