Дистанционно-регулярный граф (англ.distance-regular graph) — такой регулярный граф, у которого для двух любых вершин и , расположенных на одинаковом расстоянии друг от друга, справедливо, что количество вершин, инцидентных к и при этом находящихся на расстоянии от вершины , зависит только от расстояния между вершинами и ; более того, количество вершин, инцидентных к и находящихся на расстоянии от вершины , также зависит только от расстояния .
Дистанционно-регулярные графы были введены Н. Биггсом в 1969 году на конференции в Оксфорде[1], хотя сам термин появился гораздо позже[2].
Дистанционно-регулярный граф — это неориентрированный, связанный, ограниченный, регулярный граф валентности и диаметром , для которого справедливо следующее. Существуют натуральные числа
такие, что для каждой пары вершин , отстоящих друг от друга на расстоянии , справедливо:
(1) число вершин, инцидентных и находящихся на расстоянии от , есть ()
(2) число вершин, инцидентных и находящихся на расстоянии от , есть ().
Изначально термины «массив пересечений» и «числа пересечений» были введены для описания дистанционно-транзитивных графов[5][6][7].
Пусть есть неориентированный, связанный, ограниченный граф, а две его вершины находятся на расстоянии друг от друга. Все вершины , инцидентные к вершине , можно разбить на три множества , и в зависимости от их расстояния до вершины :
Если граф дистанционно-транзитивный, то мощности (кардинальные числа) множеств не зависят от вершин , а зависят только от расстояния . Пусть , где есть числа пересечений.
Определим массив пересечений дистанционно-транзитивного графа как:
Если — валентность графа, то , а . Более того, , тогда компактная форма записи массива пересечений есть:
Дистанционно-регулярный и дистанционно-транзитивный графы
На первый взгляд дистанционно-транзитивный граф и дистанционно-регулярный граф являются очень близкими понятиями. Действительно, каждый дистанционно-транзитивный граф является дистанционно-регулярным. Однако их природа разная. Если дистанционно-транзитивный граф определяется исходя из симметрии графа через условие автоморфизма, то дистанционно-регулярный граф определяется из условия его комбинаторной регулярности[3].
Следствием автоморфизма дистанционно-транзитивного графа является его регулярность. Соответственно, для регулярного графа можно определить числа пересечений. С другой стороны для дистанционно-регулярного графа существует комбинаторная регулярность, и для него также определены числа пересечений (см. § Массив пересечений), однако автоморфизм из этого не следует[8][9].
Из дистанционно-транзитивности графа следует его дистанционно-регулярность, но обратное неверно[8].
Это было доказано в 1969 г., еще до введения в обиход термина «дистанционно-транзитивный граф», группой советских математиков (Г. М. Адельсон-Вельский, Б. Ю. Вейсфелер, А. А. Леман, И. А. Фараджев)[10][8]. Наименьший дистанционно-регулярный граф, не являющийся дистанционно-транзитивным, — это граф Шрикханде. Единственный тривалентный граф этого типа — это 12-клетка Татта, граф с 126 вершинами[8].
Свойства
Дистанционно-регулярный граф с диаметром 2 является сильно регулярным, и обратное тоже верно (при условии, что граф является связным)[3].
Свойства массива пересечений дистанционно-регулярного графа
Массив пересечений дистанционно-регулярного графа обладает следующими свойствами[11][12]:
Каждая вершина имеет постоянное число вершин , отстоящих от нее на расстояние , причем и для всех ;
Порядок графа равен ;
Число вершин, отстоящих от каждой вершины на расстоянии , выражается через числа пересечений как для всех ;
Произведение числа вершин, отстоящих от произвольной вершины на расстоянии , на порядок графа есть четная величина для всех ;
Произведение числа вершин, отстоящих от произвольной вершины на расстоянии , на число пересечений на есть четная величина для всех ;
Произведение числа пересечений на порядок графа и на его валентность делится на 6;
Для чисел пересечений справедливо ;
Для чисел пересечений справедливо ;
Если , то ;
Есть такое , что и .
Матрицы расстояний транзитивно-регулярного графа
Пусть граф — транзитивно-регулярный диаметра , есть число его вершин, а — валентность графа. Определим множество матриц расстояний (англ.distance matrices) размера как[3] :
Свойства матриц расстояний
Матрицы расстояния обладают следующими свойствами[3]:
, где — массив пересечений дистанционно-регулярного графа и
существуют такие действительные числа , что для всех , причем есть число пересечений, то есть количество вершин, находящихся на расстоянии от вершины и на расстоянии от вершины при условии расстояния между вершинами и . Отметим, что , , .
Biggs N. L. Intersection Matrices for Linear Graphs (англ.) // Combinatorial mathematics and its applications : proceedings of a conference held at the Mathematical Institute, Oxford, from 7-10 July, 1969 / edited by D.J.A. Welsh. — London: Academic press, 1971. — P. 15-23.
Brouwer A., Cohen A. M., Neumaier A. Distance Regular Graphs (англ.). — Berlin, New York: Springer Verlag, 1989. — ISBN 3-540-50619-5, 0-387-50619-5.
Cohen A. M.Distance-transitive graphs // Topics in Algebraic Graph Theory (англ.) / edited by L. W. Beineke, R. J. Wilson. — Cambridge University Press, 2004. — Vol. 102. — P. 222—249. — (Encyclopedia of Mathematics and its Applications).
van Dam E. R., Koolen J. H., Tanaka H.Distance-regular graphs (англ.) // The Electronic Journal of Combinatorics : Dynamic surveys. — 2006. — No. DS22.
Lauri J., Scapelatto R. Topics in Graph Automorphisms and Reconstruction (англ.). — 2nd edition. — Combridge: Combridge University Press, 2016. — 188 p.
Эта статья входит в число добротных статей русскоязычного раздела Википедии.