Выброс чернобыльских радионуклидов происходил 26 апреля — 5 мая 1986 года в результате Чернобыльской аварии. На протяжении 10 дней из разрушенного 4-го блока Чернобыльской АЭС (ЧАЭС) по последним оценкам было выброшено в окружающую среду наиболее опасных радионуклидов (в процентах от содержания в реакторе на момент аварии):
менее 1,5 % нелетучих радиоизотопов Zr, Nb, Ru, Sb, Ce, Eu, U, Pu, Am, Cm в составе частиц мелко диспергированного облучённого ядерного топлива — топливных «горячих» частиц (таблица 1)[1][2][3][4].
Из 192 тонн ядерного топлива реактора за пределы промплощадки ЧАЭС было выброшено менее 3 тонн ядерного топлива[5].
В соответствии с величиной выброса радионуклидов по шкале международных ядерных событий INES Чернобыльской аварии был присвоен наивысший 7-й уровень, соответствующий крупным авариям (major accident)[1] .
Проведение работ по картированию радионуклидного загрязнения территории в 1986—2000 гг.[6][7][8][9] позволило уточнить данные о выбросе радионуклидов, приведённые в первом отчете СССР о Чернобыльской аварии, предоставленном в МАГАТЭ в августе 1986 года, где величина выброса радиоизотопов йода оценивалась в 20±10 %, цезия около 13±7 % и нелетучих радионуклидов менее чем 4,5 %[10].
Длительная (на протяжении 10 дней) динамика выброса радионуклидов из Чернобыльского реактора во время аварии, а также изменение метеоусловий привели к сложной картине радиоактивного загрязнения обширных территорий Европы[1].
Таблица 1 - Данные по наработке радионуклидов в 4-м блоке Чернобыльского реактора (на 06.05.1986г.) и их относительном выбросе во время аварии за пределы промплощадки ЧАЭС
↑Десятилетие после Чернобыля: Воздействие на окружающую среду и дальнейшие перспективы // IAEA/J1-CN-63, Vienna, Austria. — 1996.
↑Kirchner G., Noack C. Core history and nuclide inventory of Chernobyl core at the time of accident // Nucl. Safety. — 1988. — January-March (т. V.29, N 1). — С. 1—10.
↑Бегичев С.Н., Боровой А.А., Бурлаков Е.В. и др. Топливо реактора 4-го блока ЧАЭС. (Краткий справочник) // - М.Препр./Ин-т атомной энергии; 5268/3. — 1990. — С. 21.
Talerko N. 2005. Mesoscale modelling of radioactive contamination formation in Ukraine caused by the Chernobyl accident. J. of Env. Radioactivity. 78(3), 311—329. https://doi.org/10.1016/j.jenvrad.2004.04.008
Salbu B., Kashparov V., Lind O. C., Garcia-Tenorio R., Johansen M. P., Child D. P., Roos P., and Sancho C. M. Challenges associated with the behaviour of radioactive particles in the environment. Journal of Environmental Radioactivity. 186 (1), 101—115. https://doi.org/10.1016/j.jenvrad.2017.09.001, 2018
Zhurba M., Kashparov V., Ahamdach N., Salbu B., Yoschenko V., Levchuk S. 2009. The «hot particles» data base. Radioactive Particles in the Environment, NATO Science for Peace and Security Series C: Environmental Security, ed. by D.Oughton, V. Kashparov, Published by Springer, the Netherlands, 187—195.
Brandt J, Christensen JH, Frohn LM. 2002. Modelling transport and deposition of aesium and iodine from the Chernobyl accident using the DREAM model. Atmos. Chem. Phys. 2(5), 397—417. https://doi.org/10.5194/acp-2-397-2002
Evangeliou N., Balkanski Y., Cozic A., and Møller A. P. 2013. Simulations of the transport and deposition of 137Cs over Europe after the Chernobyl Nuclear Power Plant accident: influence of varying emission-altitude and model horizontal and vertical resolution. Atmos. Chem. Phys., 13, 7183-7198, 2013 www.atmos-chem-phys.net/13/7183/2013/ doi:10.5194/acp-13-7183-2013
Suh KS, Han MH, Jung SH, Lee CW. 2009. Numerical simulation for a long-range dispersion of a pollutant using Chernobyl data. Mathematical and Computer Modelling. 49(1-2), 337—343. https://doi.org/10.1016/j.mcm.2008.01.008
Simsek V., Pozzoli L., Unal A., Kindap T., Karaca M. 2014. Simulation of 137Cs transport and deposition after the Chernobyl Nuclear Power Plant accident and radiological doses over the Anatolian Peninsula. Science of the Total Environment 499 (2014) 74-88 http://dx.doi.org/10.1016/j.scitotenv.2014.08.038
Izrael, Yu.A., Petrov, V.N., Severs, D.A.1987. Modeling of the radioactive fallout in the neighboring to the accident on Chernobyl NPP zone. Meteorology and Hydrology 7: 5-12. (In Russian).
Izrael Yu.A. 2002. Radioactivity in the Environment. Chapter 5 Terrestrial contamination from Chernobyl and other nuclear power station accidents and its radionuclide composition. Edited by Yu.A. Izrael, Volume 3, 2002, Pages 149—211 https://doi.org/10.1016/S1569-4860(02)80023-7
Десятилетие после Чернобыля: Воздействие на окружающую среду и дальнейшие перспективы, IAEA/J1-CN-63, Vienna, Austria, 1996.
Анализ текущей безопасности объекта «Укрытие» и прогнозные оценки развития ситуации, Науч. Рук. А. А. Боровой //МНТЦ «Укрытие», Чернобыль, № 3836, 2001, 337с.